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Abstract

Hart proposed a unified state variable model which is capable of predicting the nonelastic
deformation for low and high temperatures over a very large strain rate range. He developed
these relations from experimental evidence and a heuristic consideration of micro-mechanism
of deformation in polycrystalline materials. Some of the important parameters can be uniquely
determined using load relaxation tests in the fully loaded regime. The model was based on the
realization that the dislocation motion is limited by the dislocation glide friction and by the
resistance to strong barriers to dislocation motion represented by the hardness parameter, o*. A
transient model based on the non-steady state condition for the frictional glide process is
introduced here using a microhardness parameter as a new state variable. The microhardness
parameter represents the strength or the average lifetime of the mobile dislocations relative to
the frictional glide viscous drag process. The evolution of the microhardness parameter is very
similar to that proposed for the hardness parameter except that the recovery plays a major
role. The power law relationship for the frictional glide process is shown to be a steady state
condition for the transient behavior in this model. The results show that the model can predict
the transient behavior for both cyclic loading and the reloading phenomena during inelastic
deformation and load relaxation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been an extensive amount of research in the development of a unified
phenomenological model for the inelastic deformation response of metals under
various temperatures and loading conditions. The state variable approach has
received a considerable attention in the mechanics community since the whole
deformation history can be stored in a few state variable parameters. For a suc-
cessful phenomenological model, three main conditions should be satisfied. First, it
should cover important ranges of loading conditions and temperatures. Second, it
should be micromechanically based. Third, it should contain the least number of
state variables. It is usually possible to fit any number of complex phenomena with a
series of complex functions and the task is then to calculate the constants for these
complex functions. State variable approach has been under constant criticism for the
fact that the parameters are used in a curve fitting scheme and no relation exists
between the parameters and the microstructure. For a useful phenomenological
model it is important to have the lowest number of state variables that are physically
justifiable and are based on micromechanical considerations.

For the polycrystalline material, the internal state variables define the current state
of deformation. This means that at any point in the deformation history the
knowledge of these state variables provides complete information on the materials
behavior at any later time. This is one reason that the unrecoverable plastic strain is
not a state variable. Inelastic strain rate can be assumed a function of the applied
stress, temperature and a set of internal state variables X.

& =f(0', T, Xl, Xz,...Xn) (1)

In reality only a few of these state variables are necessary to define the mechanical
behavior for a broad range of applications. This also means that the measurement of
these internal state variables should not require the knowledge from the prior
deformation history. It should be possible to find a special deformation path such
that the change in one or more of the state variables are either constant or are fully
predictable.

Most models concentrate on the steady-state region of the deformation history or
the fully loaded region of the tensile test and creep. Treatment of the transient
deformation associated with cyclic loading and reloading (Bauschinger effect) phe-
nomena and load relaxation is usually treated as following a different deformation
mechanism. A unified approach to incorporate these two types of deformation
modes requires a fundamental understanding of the underlying micromechanics of
inelastic deformation behavior. The phenomenological approach is based on a fra-
mework of continuum mechanics and the identification of the major state variable
parameters responsible for the more steady-state and transient deformation. Mod-
ern understanding of dislocation theories of microscopic deformation processes has
been shown to be an appropriate approach for a unified deformation model.

Constitutive relations for inelastic deformation are formulated entirely in terms of
measurable flow rates, applied stress, and internal state variables that are fully
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determined by macroscopic flow history. Most modern constitutive theories for
inelastic deformation contain, as a state variable of the deformation behavior, an
internal stress. The internal stress generally represents, also, a stored strain in the
body that can to some extent be recoverable (Hart, 1976). Since the internal stress is
a tensor quantity that reflects the direction of prior straining it is a source of aniso-
tropic behavior for subsequent loading.

There are two general classes of constitutive models that describe the stress that
drives the plastic flow. In the first class of models, internal stress is a direct measure
of the stress driving the “plastic”” flow. This class is represented in the literature only
by Hart’s model (Hart, 1976). In the second class of models, an effective stress that is
defined as the difference between the applied stress and the internal stress drives the
plastic flow. This class of models representing ‘“‘kinematic hardening’ is character-
istic of the constitutive equations proposed by Miller (1976a,b), Robinson (1983),
and Kreig et al. (1978). For a review of more recent development in these models
refer to Krausz and Krausz (1996) and Simo and Hughes (1997). These models have
been shown to be applicable to the more low temperature phenomena associated
with cyclic loading. They have also been shown to be effective in predicting materials
behavior associated with a threshold stress (overbearing stress) for high strain rate
phenomena. They are, however, limited in their range of applicability to the load
relaxation and creep behavior.

Attempts to introduce unified models based on the threshold stress concept resul-
ted in the introduction of a series of internal variables and materials parameters with
some physical link to the microstructure (Krausz and Krausz, 1996; Simo and
Hughes 1997). The division of the stress into two components of thermal and
athermal stress, however, achieved a reasonable amount of recognition in the mate-
rials community (Follansbee and Kocks, 1988). The athermal stress has played the
role of a threshold stress for many models representing the tensile deformation and
cyclic loading (Nemat-Nasser, 1983; Follansbee and Kocks, 1988; Nemat-Nasser et
al., 1989). The basis for the existence of a state variable for the athermal stress is
usually based on a set of load relaxation experiments (Ferron and Mliha-Touati,
1987; Follansbee and Kocks, 1988). More recently these models have been investi-
gated by Tanner, McGinty and McDowell (1999) and the results show that such
models are fit to the quasistatic isothermal and high strain rate data for compres-
sion. They also showed that equations-of-state with parameters determined using
constant strain rate data from monotonic loading are insufficient to describe
mechanical behavior. Different forms of models based on the existence of a thresh-
old stress have been introduced in the last few years for cyclic loading (Faruque et
al., 1996), superplasticity (Khraisheh et al., 1997) and for strain aging (Gilat and
Wu, 1997).

Arnold and Saleeb (1994) proposed a potential-based multiaxial, unified visco-
plastic model for titanium-based matrices by using specific forms for both the Gibb’s
and complementary dissipation potentials. Their model holds one tensorial internal
state variable that is associated with dislocation substructure, with an evolutionary
law that has nonlinear kinematic hardening, and both thermal- and strain-induced
recovery mechanisms. Complete potential based internal state variables are then
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derived for the derivation of reversible and irreversible constitutive equations
(Arnold et al., 1996). They found that the inclusion of strain-induced recovery pro-
vided the needed flexibility in modeling stress—strain and creep response of metals at
low homologous temperatures without adversely affecting the high temperature
response (Arnold et al., 1995). Horstemeyer and McDowell (1995) examined visco-
plastic constitutive models for components subjected to inhomogencous, non-
isothermal large strain conditions in a phenomenological general internal state
variable framework. They employed continuum slip polycrystal viscoplasticity
(mesoscale) calculations to better understand the role of different mesoscale poly-
crystal modeling features for predicting macroscale finite strain behavior. Wang and
Richmond (1992) presented a two-state variable constitutive model for modeling the
consolidation and forming processes of powder-based porous metals. This model is
suitable for materials consisting of a ductile matrix with populations of isolated and
interconnected voids. It contains two internal state variables representing the matrix
strength and the void volume fraction.

There has been a major difference in the approach to treat work hardening. Sam-
ple et al. (1993) proposed a two-internal state variable model that predicts the con-
stitutive response adequately over a large temperature-strain—strain rate domain.
Their model assumes additive decomposition of the flow curve into steady state flow
and hardening components. This enables independent determination of parameters
prescribing the evolution of each state variable from a series of simple flow curves.
This also suggests two mechanisms for the work hardening behavior. Khan and
Liang (1999) proposed a constitutive relation for the more high strain rate regime.
Hannula (1988) investigated the work hardening behavior of some FCC metals in
terms of state variable model proposed by Hart and proposed a new work hardening
correlation based on the separation of athermal and thermal contributions to the
work hardening coefficient. Since the original Hart’s model defines work hardening
primarily as an athermal process for the hardness parameter, the thermal contribu-
tion suggests a different mechanism for the frictional glide process. Jackson et al.
(1981) proposed a modified phenomenological state variable model based on Hart’s
model. They introduced a second work hardening mechanism operating within the
internal stress variable as transient deformation phenomena at stresses below mac-
roplastic yielding by incorporating the weak barriers to dislocation motion into the
model (Alexopoulos et al., 1982).

The source of the transients has been the subject of research since Zener (1948). In
the more steady-state deformation conditions the transients due to anelasticity can
be ignored (Dewhurst and Dawson, 1984). Alden (1987) used a theory of inelastic
deformation previously applied to 304 stainless steel to study a variety of materials
that differ in the degree to which dislocation motion is resisted by viscous drag forces.
Essmann and Mughrabi (1979) presented phenomenological models of dislocation
accumulation during deformation by taking into account the annihilation of disloca-
tions. They proposed that during dislocation glide at low temperatures, both screw and
non-screw dislocations annihilate mutually with dislocations of opposite sign
approaching on closely neighboring glide planes. This study suggests a diverse transient
strain rate behavior determined by the magnitude of the drag forces, but a common
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steady state strain rate controlled by strain hardening (Alden, 1987). The modeling
effort by Jackson et al. (1981), however, suggests that the neglect of weak barriers to
dislocation motion at the dislocation pile-ups is the source of these transients.

Hart’s model has been shown to predict the plastic deformation for low and high
temperatures over a very large strain rate range (Hart, 1976). It contains an incre-
mental description of inelastic deformation behavior that enables a set of state
variables to fully account for any previous complex loading history. He developed
the form of these relations from experimental evidence and a heuristic consideration
of micro-mechanism in the material (Hart, 1976, 1984). Some of the important
parameters can be uniquely determined using load relaxation tests in the fully loa-
ded regime. A simple power law relationship was defined for the frictional glide. The
model showed some difficulties in predicting the more non-steady conditions due to
transient deformation. In the present paper it is assumed that the interaction of the
viscous process at non-steady conditions and the internal stress is the basis for
transient behavior associated with cyclic loading, reloading, and the Bauschinger
effect. Earlier attempts to correct these deficiencies resulted in a modification of the
internal stress to include the transient effect (Jackson et al., 1981).

In the following sections a brief review of Hart’s constitutive model will be given.
The second invariant of a deviator tensor quantity for the isotropic case is calculated
from

1
Y=5 (i) 2 2

where x is the scalar invariant of tensor x and x;; are the components of the tensor in the
Cartesian coordinate system. An dnlSOtl‘OplC fourth rank tensor Kj;; can be used for
the anisotropic case such x = 1 (Kjj/x;jxxr) "2 This has been discussed earlier and for
the rest of this paper only the isotropic case will be considered (Hart, 1976). A
modification to the model, which incorporates the transients in stress relaxation and
cyclic loading, will be introduced next. The model will be examined based on the
results of a new testing method, inelastic strain rate control. The details of this test
have already been provided in a separate paper by Hart and Garmestani (1993). A
brief discussion of the testing method is also provided in Section 4.

2. Hart’s model

Hart’s constitutive equations are relations among the applied stress, the obser-
vable inelastic strain rate, a tensorial internal state variable, and a scalar state vari-
able called the hardness parameter (or the isotropic hardening parameter) (Hart,
1976, 1984). Hart’s model consists of three elements as shown in Fig. 1. The strain
rate constraint in the material frame is given by

£_a+—(a) (€)
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where ¢, a and & are the deviator tensor quantities for the inelastic strain rate,
anelastic strain (tensorial internal state variable), and the unrecoverable plastic
strain rate, respectively. The stresses are related by

c=0"+0 4)

where o, o/, 0® are the deviator tensor quantities for the matrix stress, frictional
glide stress, internal stress (anelastic stress), respectively. The tensorial relations may
be written as,

¢ =(¢/ay)0’ (5)
& = (&/0,)0" (6)
0 = (0,/a)a €

where o, o/, ¢, ¢, a and & are the second invariance for the deviator tensor quan-
tities.

The scalar invariant quantities are related by the following relations. The unreco-
verable plastic strain rate, &, which represents the leakage of dislocations through
strong barriers depends on the auxiliary “internal” stress o, and on the current
value of the ““hardness” o* according to Egs. (8) and (9),

fz]-I5]
&* :_}((G*/G)’7167Q/RT (9)

where £* is a strain rate parameter, f is an experimental frequency constant, Q is an
activation energy, R is the gas constant, G is the modulus of rigidity and m and 4 are
material constants. These constants are found to be m= 4.5, and A= 0.15 for most
materials (Table 1). Hart’s model represents a class of modern constitutive relations
that use internal stress (o,) to drive plasticity. Plasticity is defined in terms of
unrecoverable plastic strain represented here by «. This is represented by Eqgs. (6)

da
dt o
VWA " G,

€
]
1

o

Fig. 1. Hart’s constitutive model.
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and (8). The inelastic strain rate, ¢, is a function of frictional glide stress, o, through
a non-Newtonian viscous relation

. oY
é=a* [—i| (10)
n

where @* is the inelastic strain rate parameter and depends only on the temperature,
w is the inelastic modulus, and M is a material constant found to be M=27.8 for most
materials. The two Egs. (5) and (11) show that the total inelastic strain rate (which
includes the anelastic strain rate) is driven by the difference between the applied
stress and the internal stress. This may explain the controversy over the second class
of models that may be able to predict a specific range of inelastic strain rate beha-
vior, which includes anelasticity as a major component. This may be the case for
cyclic loading and load relaxation at small strains. The anelastic strain, a, which is a
state variable (through o,) is related to the internal stress by Eq. (11).

0, = pa (11

Work hardening and recovery of the barrier strength o* are given by,

ding*
2;7 — (0%, 6,)d — R(c*, T) (12)

where R is the recovery term that is negligible at moderately low temperatures, and
I" is the work hardening function represented by the following equation,

@ ()

where C is a constant. Although there are many equations involved, only a few of
them are needed for a simple application. For the rest of this work only the equa-
tions for the uniaxial tensile tests are considered.

Hart’s model is shown to describe the tensile, load relaxation, and creep behavior
of a number of crystalline solids under uniaxial loading when plastic flow pre-
dominates. Certain real material processes, such as large scale thermal recovery and
strain-aging, are only tentatively incorporated in the recovery term, R. It is assumed
that the passage of dislocations through strong barriers results in unrecoverable
plastic deformation (and the consequent hardening according to Eq. (13) and the

Table 1
Parameters of the transient model calculated from the experimental results

M (MN/m? ) f(GPa)=55/s m  G(GPa) OQJ/R(K-") &s ' st k

7.8 3.5x10* 0.15 3.9E-18 45 32 25500 24E-6  3.5x102%2 8
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resistance to dislocation motion produces an anelastic strain (internal stress) due to
pile-up of dislocation. It was proposed that dislocation glide occurs by a viscous
process and that is the basis for the apparent hysteresis and transient phenomena.

The model predicts two behaviors at low and high strain rate regions in the
absence of grain boundary sliding (Fig. 2). The low strain rate regime is character-
ized by a concave downward behavior. This is the characteristics of the metal
deformation at high homologous temperatures and is represented by Egs. (10) and
(11). The high strain rate (low temperature) region is characterized by the frictional
glide processes and is represented by Eq. (12). This region exhibits a concave upward
behavior as shown in Fig. 2.

3. Modified Hart’s model for transient behavior

Let us define o’ as a transient stress and o/ as the steady-state value of the tran-

sient stress such that o/ — o as % — 0. The elements of the model can be

related to the original Hart’s model as shown in Fig. 3. The strain rate constraint in
the transient element is given by

.o, d
s:az—i—a(a’)

(14)

A Low Temperature
High strain rate
Dislocation Glide region

Log(Stress)

High Temperature
Low strain rate
Dislocation Climb Region

Log(Strain rate)

Fig. 2. Prediction of Hart’s model for a very large range of temperatures and strain rates.
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where ¢, a” and &' are the deviator tensor quantities for the inelastic strain rate, the
transient strain rate (tensorial internal state variable), and the microplastic strain
rate, respectively. The strain rate is also related to the plastic strain rate and the
anelastic strain rate as in Eq. (3). As a matter of fact, the transient stress is linearly
proportional to a transient strain through

o, = ja (15)

where u, is the transient modulus. A micro-hardness parameter, o} is defined here
which defines the strength of the viscous path. The microplastic strain is related to the
transient stress through a relationship identical to the plastic strain rate relationship,

In(o*/0,) = (&7/a)" (16)

& =éo(o7 /)" (17

where &g, ., Az, and m, are material constants. The evolution of the micro-hardness
parameter is very similar to that of the hardness parameter except that the recovery
term plays a major role,

dlno;
dr

:le[ _R[. (18)

We present a form for I'; and R, (Hart and Garmestani, 1993) as

ky % —1
-
da
dt &
VWA o C,
— . g, €
€
T o

-

Fig. 3. The transient model in relation to Hart’s model.
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where

*7P
Rpﬂ{ﬁl (20)
1254

Both ry and ¢, are materials constants. Eq. (18) is very similar to Eq. (12), except
that R in Eq. (12) is a strong function of temperature and the hardness parameter.
The hardness parameter can only increase except for conditions at which recrys-
tallization or recovery are involved. No simple form has been introduced for R in
Eq. (12) yet, but the proposed form for R in Eq. (20) presents a strong dependence
on the microhardness parameter. In Table 2 a summary of the equations listed
above is presented by comparing the modified Hart’s model to the original model.
There are only two internal state variables for the original model model: o* and o,.
A new state variable, o (microhardness parameter), is introduced here which
represents the strength of the resistance to dislocation motion.

Table 2
The comparison of the Hart’s model to modified Hart’s model with the frictional glide stress as a transient
element

Hart’s model Modified Hart’s model
Strain rate constraint E=a+ %(a) E=a+ %(a)
d=d' +4@)
Stress relationships o=0"'+0o o=0"+0o
o - o
Flow rules é=(8/oy)o’ é=(8/0y)0’

Scalar relationships for the
internal stress

Scalar relationships for the
frictional glide stress

a = (a/o,)0"
o =(o,/a)a

ofz]-]

o, a

& =flo" /G)"e IR
0, = ja

e’ = P(0*, o) ~ R(0"T)

r-c(e) @)™

e =a[2]"
e

a = (a/o,)0"
o = (o,/a)a

a' = (a,/07)0’
o' =(o,/a)a’
The same
o' = wa

In(o?/0/) = (¢7/a,)"

& =éo(o7 /)"

dino} .
= al't =R,

g ki ge1—m
ri=afz] 7]

4
-l
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It is clear that the modification is only performed for the frictional glide stress
component of the model. As shown in Figs. 1 and 3, frictional glide stress is replaced
with two other elements, which will behave as the frictional glide stress in steady-
state conditions. Note that in the modified model frictional glide stress is only a
limiting steady case and that is why we have replaced it with o,. In reality o, and oy
are the same. It is sufficient to add that such a steady-state condition corresponds to
the fully loaded regions of the stress strain curve and other experimental conditions
that correspond to da/dz=0. Such conditions can also correspond to the load relaxa-
tion once the transition occurs in the fully loaded region of the stress strain curve. The
purpose of the present effort is to incorporate experimental conditions that corre-
spond to such transients in both monotonic loading and load relaxation tests.

In the following we will show that a steady-state exists for the transient model and
the modified Hart’s model very simply reduces to the original Hart’s model. A
methodology is also presented to find a relationship among the parameters of the
model and that of the original model (steady state condition).

3.1. Steady-state condition

The purpose of the present modeling effort is to incorporate the transients asso-
ciated with monotonic loading and load relaxation by introducing a new state vari-
able, micro-hardness parameter. The steady-state condition proposed here refers to
non-transient conditions and should not be confused with steady-state creep condi-
tions. A steady-state condition is defined here for the transient element such that

din(o7/0;)

n >0, at of = o 21

During the fully loaded region this steady-state may be relaxed to the condition
dino7 /df = 0. The microplastic strain rate can then have a steady-state limit such that

ny
G = a* (%) . 22)
t

A parameter vy is defined to represent the transient strain rate sensitivity as

_ dlno;,

5= dlng,

| of=constant* (23)

Substituting Eq. (22) into Eq. (23) yields v, = ”iﬁ and from Eq. (22) we may write,

v = 2n ["} 24)

O,
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or

*

% = exp(vy//). (25)

The microplastic strain rate at steady-state can be calculated using Egs. (16) and
(17) as,

i = io| 22| [in(a /) o 6)

t

A comparison of Egs. (22) and (26) requires that m, = m,, and

it = & [‘Hm lIn(o/o)] . @

t

Eq. (26) relates the parameters of the frictional glide stress as the steady-state limit
of the transient model. A comparison of this equation and the power law relation
for the frictional glide stress relationship, Eq. (10) shows that,

my=m; =M (28)

and

* M2 )
a; =& m [in(c7/0:)] . (29)

t

If this steady-state condition is found experimentally, then &3 can be measured
from the relation

% =Ny
b0 = a* [‘;—’} [in(c7/0)]"". (30)
t

At steady-state, the governing equation for the evolution of the transient micro
hardness parameter o}, Eq. (18) becomes,

o, k; 0.* —my (T* P
o= of 2] T2 " -nf]. o
G[S Mt 1%

Rewriting this equation to find &, we get

x 1 ki+mi+p my+p

. (o) [0}

s = (ro/co) [Ff} [ﬂ . (32)
t t
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Equating Eqgs. (32) and (26) results in,

0'*, my—k,—mj—p 173, "o o, my+p—ny
[_m} [In(o7,/0),] V= 10 [ . (33)
(o Coco [ My

If vy is to remain constant (independent of o;), then we must have,

p+m —my=0 (34)

which results in,

ro ) O_;ks my—k;—m;—p . —1/4
g =0 ?’ [ln(O'm/O‘,)] (33)

and o}, /o, is independent of o,. In addition, Eq. (35) determines the ratio ry/c.
Also from Eqgs. (34) and (28) we may write,

my =m; — p. (36)

The steady-state condition may be achieved either at the fully loaded region of a
tensile test, or in the case of a constant inelastic strain rate test (Hart and Garmes-
tani, 1993). It can be assumed that in such a test the transition to steady-state is
instant. In the following, the result of number of experiments based on the inelastic
strain rate control is explained and then the model parameters are determined for
the transient model.

4. Inelastic strain rate control experiments

The experimental configuration employs a strain gauge or strain transducer
mounted directly on the tensile specimen. The inelastic strain ¢ is given to a high
accuracy by the relation,

e=¢g —e (37
where e is the specimen elastic strain and ¢, is the total true strain. Furthermore the
elastic strain may be expressed in terms of the measured applied load P by

e=CP (38)

The constant C is the machine compliance and depends also on specimen geo-

metry (Hart and Garmestani, 1993). This constant can be selected so that the elastic
strain is compared directly with ¢,, and so

e=¢ — CP. (39)
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An Instron Model 1321 tension—torsion servohydraulic testing machine with ana-
log circuitry was used for the experiments in this work which provides a command
signal e.(¢) that can be compared electronically with the current value of the inelastic
strain &. The difference between ¢ and &, provides an error signal that drives the
actuator. The actuator drives the load train so that the error signal is held as close to
zero as possible. The imposed strain rate &, is controlled by an analog function
generator that is in turn controlled by a digital computer and an analog-digital
interface. The method of controlling constant inelastic strain rate requires that a
signal proportional to the load cell feedback be subtracted from the strain input
signal in real time and that the resultant difference be used as the active feedback
signal. This constitutes a system with an additional closed loop circuit.

Two different kinds of experiments have been performed and discussed in this
paper. They are cyclic loading at constant inelastic strain rate and abrupt changes of
¢ from an initial value &; to zero. The second experiment is a new kind of load
relaxation performed under constant inelastic strain. The material chosen for the
purpose of this paper is Al-1100. Both strain gages and extensometers (4% range)
have been used to measure the current value of the strain on the sample. For the
tests in load relaxation and cyclic loading a strain gage was used whereas for large
strain amplitudes an extensometer was used.

4.1. Inelastic strain rate cyclic loading

The inelastic strain rate control circuitry has been used to produce a hysteresis
loop for a high purity aluminum sample as shown in Fig. 4. The different loops are
obtained using the incremental step test. One specimen is subjected to a series of
blocks of gradually increasing and decreasing strain amplitude. After a few cycles
the material stabilizes. At inelastic strain cycle amplitudes of 100-1300 pe and strain
rates of 5x 107> (s~!) very stable cyclic loops were obtained for aluminum.

4.2. Inelastic strain rate load relaxation

Abrupt strain rate change tests are used commonly to measure the strain rate
sensitivity and transient behavior of materials (Alden, 1977). The experiment
involves an abrupt change in the controlled inelastic strain. The stress data is then
plotted in time as the output of the experiment. Direct measurement of total strain
and stress and a plot of the calculated inelastic strain will ensure the accuracy of
the test. The load relaxation test is conventionally performed by loading a speci-
men in tension or compression to some predetermined load and extension, and
subsequently recording the load as a function of time at fixed cross head position.
The best testing requires a rather stiff machine (to minimize the time of the experi-
ment), and good temperature stability and control (Lee and Hart, 1971; Hart and
Solomon, 1973; Hart and Garmestani, 1993). The relaxation time is inversely pro-
portional to the stiffness of the machine plus the specimen. A constant inelastic
strain load relaxation test depends only on the inelastic property of the material
under deformation.
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Fig. 5 shows a load relaxation experiment from an initial inelastic strain rate of
10> (s~ 1). The result of the loading history is plotted on a log-log scale. The load
relaxation was initiated from the fully loaded region of the tensile test.

4.3. Hart’s model for controlled inelastic strain rate.

Hart’s model, while providing a unified description of plasticity dominated
deformation, exhibits deficiencies when applied to transient deformation phenomena
at stresses below macroscopic yield. In the following the results of the classical
model are compared to the controlled inelastic strain rate experiments. Applying the
model for this mode of deformation is very easy since the frictional glide stress and
the internal stress can be analyzed independently. Frictional glide stress depends
only on the inelastic strain rate through Eq. (10). As a result, frictional glide stress
has a step function behavior. It is zero at zero strain rate. It abruptly changes to a
value determined by Eq. (40),

a1 /M

o = u(é/ar)”" (40)
and then remains constant until there is a change in the applied inelastic strain rate.
Internal stress, however, behaves quite differently (as shown in Fig. 6). For the

independent o, branch, the unrecoverable plastic strain may be written as,

a= é[ln(o""/oy,)]*l/i (41)
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Fig. 4. Record of stress versus inelastic strain for subsequent curves of increasing inelastic strain amplitude.
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Using Eqgs. (3), (11) and (41) the following differential equation is derived

do
dt

L4 pélln(o* /o) = pé (42)

where ¢ is constant. This equation is the governing equation determining the beha-
vior of the internal stress during an experiment where the inelastic strain rate is kept
constant.

Fig. 7 shows the result of the constant inelastic strain load relaxation experiment
for 1100 aluminum. By performing a non-linear fit to the data ¢* and ué* are
determined with a high accuracy. Independent evaluation of p is possible at this
point by finding the slope of the stress versus inelastic strain curve at the initial
loading during an inelastic strain rate controlled test. More accurate measurement
of w is not necessary at this point because our intention is to show the most general
behavior. The result of the simulation plotted in the same figure demonstrates the
agreement between the result and the experiment.

The result of the simulation for the loading curve for an inelastic strain rate tensile
test is shown in Fig. 8. The experiment data for aluminum is shown in the same plot.
The model predicts a very sharp transition to the steady state value of o,. The
experimental data however shows a very smooth transition. After the transition the
material is fully represented by the plastic element.

Consider the region o, < o,, where plasticity is negligible. In this region the
model behavior is dictated by anelastic strain. In a constant inelastic strain rate
loading unloading, the model predicts a linear behavior followed by a jump repre-
sented by frictional glide stress. The return is also linear (Fig. 8). By contrast, real
materials deviate from this behavior, both during loading at some fraction of the
applied stress and during unloading as the stress approaches zero.
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—~ [o]
< - o°
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212- o8
b=} J o
) )
i o
21
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o —
5 -4 -3 -2 -1 0

Log Stress rate (MPa/sec)

Fig. 5. Plot of log o versus log ¢ for constant inelastic strain relaxation experiment.
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Fig. 6. Schematic diagram showing the behavior of the frictional glide stress and the internal stress for a
constant inelastic strain rate test.
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Fig. 7. Plot of log o versus log ¢ for the simulation performed on Hart’s model on the load relaxation
experiment at constant inelastic strain.
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From these observations, it seems that a second strain may be accumulating dur-
ing deformation other than the two mentioned above. It may be concluded that the
anelastic strain has a non-linear behavior. This, however, would lead us to the con-
clusion that after a drop to zero load all or most of this strain should recover. Such
tests have been performed in this study. The result shows that even after a month of
relaxation the strain recovered is only a fraction of the elastic strain. This suggests a
value of anelastic modulus several times higher than elastic modulus. The transients,
however, are as large as 10-20 times elastic strain, which suggests a very small value
for the anelastic strain. This contradiction suggests that if the anelastic strain mea-
sured during load drop tests are truly due to anelasticity there has to be a separate
phenomena explaining the transient behavior. This problem was already recognized
by Hart and Solomon (1973). In the following a new model for the transient beha-
vior will be presented such that the conventional power law for the frictional glide
stress can be defined as the steady state condition.

5. Simulation and results

In a constant inelastic strain rate test cycle shown in Fig. 4, it can be assumed that
a true steady state condition exists. The power law relationship in the form of Eq.
(22) can then be used as shown in Fig. 9 to simulate the loading history. It was
found that the power m, remained constant during loading. This power was found
to be mp =0.17-0.3 for aluminum.

Both u; and i can be calculated from the inelastic strain rate cyclic load test. The
methodology is very similar to what is described already in a model presented by
Jackson et al. (1981). To find the parameters &y, and ¢y the limiting behavior of the
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Fig. 8. Plot of stress versus inelastic strain for the experimental data and simulation results for Hart’s
model in the absence of work hardening.
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model is considered. During loading the strain rate of the transient element cannot
exceed the total imposed inelastic strain rate. This restriction provides a method to
approximate some of the parameters experimentally. During full loading the steady
state assumption is valid, and o, reaches to a maximum once ¢, = é. If this max-
imum value is called o, then ¢ can be determined from Eq. (26), and thus,

g0 = &lexp(—1/2)1(m )™ (@ m /1) ™. (43)

The only variable to be determined experimentally is then o,. At full loading o7
also reaches a maximum once &, = &. Thus, Eq. (32) predicts ¢j to be

- k >.;11 "
co = (ro/£)exp (m ; ) [‘;] (44)
t/t t

where o7 is the maximum value for o7 at steady-state. The recovery of the transient
hardness parameter o becomes important at low stress and during the load rever-
sals. The data for the load reversals during a constant inelastic strain rate test can be
used to determine the recovery constant ry. The parameters used for the simulation
of the numerical results are found by best fit to the experimental results as given in
Table 3.
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Fig. 9. Plot of stress versus inelastic strain for the experimental data and simulation results for the first
class of models.
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5.1. Numerical simulation for cyclic loading

A simulation of the small strain results for high purity aluminum with the tran-
sient recovery model is shown in Fig. 10. Note that no steady-state condition is
assumed here and the fit is perfect. The result of the simulation shows good agree-
ment between the result and the simulation for subsequent loading curves. The fit to
the small and large strain cyclic data is also very good. This is perhaps, not too
surprising, considering the additional parameters. The model can predict any curves
for larger inelastic strain amplitude.

The hardness parameter o7 recovers during unloading and at low stress levels and
hardens during loading (Fig. 11). This behavior results in a smoother reloading behavior.

5.2. Numerical simulation for load relaxation data

During transient loading the unrecoverable plastic strain rate & is negligible for
initial loading history. Using the governing equations and since ¢ is zero, we get

1/
do . o\l o*
Sl TN 2 . (45)
dt Wy o — e
Table 3
Parameters of the transient model calculated from the experimental results
w(GPa)  w, (GPa) 2, ) m, k, G go (s71)
10.4 29.7 0.15 0.2-0.35 5.0 6-8 26.7 4.2x10~1 1.2x10%°
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Fig. 10. Plot of stress versus inelastic strain for the experimental data and simulation results.
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Fig. 11. Plot of o7 versus inelastic strain for a constant inelastic strain rate tension-compression cycle.
The results are provided only for the tensile part.
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It should be noted that o does not remain constant during the relaxation. In the
event that the unrecoverable plastic strain rate & is not negligible the solution is
given by including all of the constitutive equations with the requirement that ¢ =0.

Fig. 12 shows the experimental results for load relaxation experiments performed
at different stages of loading (Fig. 13). In reality the relaxation occurred for much
longer time and covered a much larger range of strain rates as reflected in Fig. 12.
Fig. 13 shows the initial part of the relaxation. The rest shows up as a straight ver-
tical line that would not produce any additional information and was omitted in the
figure. The path back to the main cycle is as shown in the figure. The strains before
relaxation correspond well to each other for the two figures. Fig. 14 shows the result
of the numerical simulation for the load relaxation experiments performed at dif-
ferent stages of loading. The difference can be explained on the values of the tran-
sient stress at the beginning of the test. During the loading process o, gradually
decreases and its transient contribution gradually diminishes. The stress level
increases by a very small amount during this process. At full loading no transient is
observed since o, becomes zero (Fig. 14). This, however, requires a large amount of
strain (1%). All the parameters for this experiment are the same as the ones used for
the load relaxation experiment.

6. Conclusion

A transient model is presented here based on Hart’s original model. The results
show that the model not only captures the cyclic behavior but also predicts the
transients in load relaxation experiments. The new model introduces a new state
variable in the form of a micro-harness parameter. The new state variable is a mea-
sure of the small barriers to the mobile dislocation density whereas the hardness
parameter originally proposed by Hart represents the strength of the strong barriers
to dislocation motion (forest dislocation, grain boundaries, etc.). A steady-state
condition is proposed which reduces the model to the conventional Hart’s model for
inelastic deformation of polycrystalline materials. Most of the model parameters can
be determined from the steady state condition and a methodology is introduced to
measure the other parameters from a novel experimental technique based on the
control of the inelastic strain rate.
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