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A stress analysis of superconducting solenoids is presented which includes a generalized plane
strain(GP9 condition for the axial strain. The GPS condition is introduced on the assumption that
the deformation of a solenoid from a right circular cylinder is small. The GPS assumption results in
an analytic solution for all three components of stress and strain in a solenoid. The work is presented
in the context of the historical development of stress analysis for solenoids. The general stress
equations for a magnetic solenoid are formulated. The relationship between a right cylinder
deformation and the generalized plane strain condition is examined for the physical conditions in the
central region of a solenoid magnet. The general analytic solutions of the stress equations are given
for the cases of magnetic and thermal loading. The constant coefficients are determined for cases of
common interest in solenoid magnet design. The analytic results are compared with numerical
analysis results for an example solenoid consisting of a single coil with external reinforcement. In
particular, the degree to which the axial strain is a constant and satisfies the GPS assumption is
examined for the example solenoid. The analysis reveals features of the axial stress in solenoids,
including the Poisson’s ratio induced axial stress and the axial stress distribution between coil and
reinforcement during cooldown and operation. The strong agreement between the GPS and
numerical analysis results shows that the assumptions contained in the GPS analysis accurately
represent the conditions in the central region of a solenoid magnefL99® American Institute of
Physics[S0021-8979)01024-5

I. INTRODUCTION produced by the entire set of coils which constitute the mag-
net. Historically, the analytical treatments have been re-
The mechanical stress analysis of superconducting soletricted to two dimensions with assumptions suitable only to
noid magnets is an essential and integral part of the desigthe coil midplane. The dominant radial magnetic force gives
process. The windings of a high field solenoid are typically &ise to a reaction stress in the tangential, or hoop, direction.
complex composite material of conductor, reinforcementThe two dimensional analyses treat the tangential and radial
and insulation. As magnets increase in field and bore sizesomponents of stress. But the actual stress distribution, even
the windings are subjected to increasing values of mechanin the midplane, is inherently three dimensional. As an ideal
cal stress, and a more complete understanding of the strepgiting condition, it is assumed that the central region about
distribution is required. Here, the detailed formulation andthe midplane of a solenoid coil is in a state of generalized
solution of a three dimensional analysis of stress in solenoi@xjal plane strain. It is found that with the GPS assumption,
magnets under the limiting assumption of generalized planghe resulting stress equations can be solved directly to yield a
strain (GPS is presented. solution which displays the essential aspects of the full three
A solenoid magnet is a cylindrical structure with a non- dimensional conditions at the solenoid midplane.
uniform distributed body force. A magnet may be con- A superconducting magnet must be cooled to low tem-
structed from a number of coils of increasing diameter ”eSteﬁerature for operation. An anisotropy in the thermal contrac-
together and, as will be assumed here, mechanically indepefon of the windings, or a difference in thermal contraction
dent except for alignment. A magnet can be a single coil agetween windings and reinforcement will result in a me-
well. Within a coil, the dominant magnetic force is radial chanjcal stress. That mechanical stress which results from
outward. In addition, there is a significant load from the axialinermal contraction is called the thermal stress. The GPS
component of magnetig force which is distributed prima.rily' assumption is applied to the thermal stress, and as with the
near the ends of a coil. The problem of stress analysis ifyechanical stress from magnetic loads, a three dimensional
solenoid coils is made difficult by a degree of bending, esxqytion is obtained. Within a linear elastic model, the total
pecially toward the ends of a coil, which has an associatedyress in a solenoid is the superposition of the mechanical
shear stress, and by the lack of a closed analytic form for thg,§ thermal stress.
distributed magnetic load, which originates from the field Here, in a systematic way, the form of the most general

stress balance equations for a cylindrical solenoid magnet are
dElectronic mail: markwcz@magnet.fsu.edu first formulated. The assumption of GPS is then shown to be

0021-8979/99/86(12)/7039/13/$15.00 7039 © 1999 American Institute of Physics

Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subject to AIP copyright, see http://ojps.aip.org/japol/japcr.jsp



7040 J. Appl. Phys., Vol. 86, No. 12, 15 December 1999 Markiewicz et al.

related to the displacement and loading in the central region [ C;; C, Cg O 0 0].
of a solenoid. Under the assumption of GPS, the stress bal- 01 Cii Cor C 0 0 0 €1
ance equations for the mechanical stress problem and for the | o2 12 =22 =32 €2
thermal stress problem are formulated. The general solutions | o3| |Ciz C3 Ciz 0 0 0 ]| ¢
to these equations are first expressed in terms of constant | 7,31 | 0 0 0 C, 0 O || V23
coeffluents._TO. complete the full analytl_cgl solutions, Fhe Ta1 0 0 0 0 Ce O Ya1
detailed derivations of the constant coefficients for configu- 1 Y12
rations of usual interest are then given. -7 L0 0 0 0 0 Gl T

(W
in a commonly used mixture of contracted notation for the
normal stress and straifo,e) and engineering notation for
Il. MATERIALS PROPERTIES the shear stress and strdiny), and where theC;; are the
components of the stiffness matrix. In the formulation of the
This stress analysis applies to the windings of a cylindri-solenoid stress problem, it is seen that there is no coupling
cal solenoid. It is assumed that the principle material direcbetween the normal stress and the shear strain. Each compo-
tions are aligned with the cylindrical coordinate axes. Coilshent of the shear strain is related to the component of shear
may be layer wound of round or rectangular conductor. In gtress in the same plane.
helical winding, the cylindrical coordinate axes are an ap-  The compliance matrix formulation is most useful to ob-
proximation to the principle material axes in any layer. Fortain the compliance matrix elements from the engineering
many coil constructions, the pitch angle of the windingsconstants. The symmetric compliance matrix for an orthotro-
along the cylindrical axis is zero except for a short arc lengtHic material is given by

in which a jog occurs to move the wire along the axis. Ex- "o Vo1 Vay 9
cept in these jog regions, the wire is aligned with the coor- E "E E 0 0 0
dinate axes. Coils may also be pancake wound of tape con- 1 2 8
ductor, in which case the conductor is always aligned with V12 i Va2 0 0 0
the coordinate axes except for localized connections at the E: E =
inner and outer radius of the coll. » » 1

The materials properties in the direction along the con- - 0 0 0
ductor are dominated by the properties of the conductor it- S = Eq E: B )
self. The analysis assumes a uniform current density, which ! 1 '
is the case for a coil wound of a uniform cross section con- 0 0 0 (3_23 0 0
ductor with a uniform distribution of insulation. The insula- 1
tion in a coil tends to have a lower elastic modulus than the 0 0 0 0O — 0
conductor. As a result, the materials properties in the direc- Ga
tions transverse to the conductor can be strongly influenced 1
by the insulation. Furthermore, it is not uncommon to have a 0 0 0 0 0 G_l2

] [

different insulation system between layers than between
turns, in the form of an insulation sheet or cloth betweenwhere thek; are Young's moduli, thé&;; are shear moduli,
layers in addition to the insulation on the individual wires. @nd thevj;=—¢;/¢;, are Poisson’s ratios. The stiffneSsis
These factors are reflected in the assumption that the wind2Ptained from the compliancg by matrix inversion.
ings are a homogeneous and orthotropic material in the prin- A thermal strain is associated with the cooldown of the
cipal material axes, for both mechanical properties and theiSUperconducting coil to operating temperature. The thermal
mal contraction. contraction strain

The windings of a coil may be reinforced. The reinfor_ce— Eith: aAT 3
ment can take the form of a shell around the cylindrical
windings or may be distributed among the windings. An ex-IS assumed to have no shear components in the principle
ternal shell may be a homogeneous solid cylinder or may b&haterial axes.
a winding of reinforcement wire similar to the conductor
windings. The reinforcement is likewise assumed to be ho-
mogeneous and orthotropic. ll. STRESS BALANCE EQUATIONS FOR MAGNETIC

The windings of a coil are thus a composite materialsoL ENOID, GENERAL FORM
consisting of conductor, insulation, and possibly distributed
reinforcement. The principles of macromechanics of com-  In the cylindrical coordinatesr(6,z), the uniform cur-
posites are well suited to the computation of the averag&ent densityJ, gives rise to field componenB, and B, ,
material properties of the windindsThe stress analysis is which are independent of. The distributed Lorentz force
formulated in terms of the average materials properties, angdensity per unit volume of the windings has components

the results are the average stress and strain. X =J.B
In the principle material coordinates, the general form of roTeme (4
the stress—strain relations for an orthotropic material is X,=—J34B,.
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The general displacement of a point in a cylinder may bgor developments in the evolution of an analytical treatment
described by components,{v,w) along the coordinate axes are reviewed here, relating assumptions and simplifications
as a function of position throughout the cylinder. On themade by various authors in the treatment of the forgoing
basis of the symmetry of a solenoid winding, the symmetryequations.
of the Lorentz force density, and the assumption of homoge- The present work is in the line of development that is
neous material properties including the thermal contractioncharacterized by the work of Lontai and Marsfom this
the general form of the displacement in a magnetic solenoigvork, the windings were assumed to be a homogeneous, lin-
under both the thermal contraction loading, and the Lorentzar elastic material, with constant current density subject to
force loading will be the distributed Lorentz body force. The equations are formu-
lated in terms of the displacement of the windings and the
relationship of the displacement to the strain. The solutions
v=0, (5)  are obtained for coils with external reinforcement by apply-
ing the general solutions to each radial section and matching
boundary conditions in order to determine coefficient values.
The strain—displacement relations of continuum mechanics Limiting assumptions imposed by Lontai and Marston
are well known, relating the displacement to the total strainwere isotropic material properties, a linear dependence of the
The total strain at any point is the sum of the total mechaniaxial magnetic field with radius, and zero shear. The axial
cal strain and the thermal contraction strain. For the abovéorce was also taken to be zero to yield a two dimensional
form of displacement, the nonzero components of strain ar@lane stress solution. Later analyses examined cases of in-
au creasingly general assumptions. Many of these analyses were
5ﬁ°t= €+aAT=—, limited to the plane stress condition of zero axial stress.
ar The analysis of Burkhafdnakes the same assumptions

o u of isotropic material, two dimensional plane stress, and lin-

€g =€yt ayAT= T ear field distribution. In this treatment, there is an emphasis
on coils of many radial sections and the formalism for

u=u(r,z),

w=w(r,z).

oW © matching the boundary conditions is well developed.
el'=e,+ a,AT=— . . . .
z 2t %z 9z’ The mechanical properties of the conductor are quite dif-
ferent than the properties of the insulation between turns.
tot__ au Iw There can be a significant difference in average properties of

=Y, ==+, L . T . o
Yz = V2= T oy the windings depending on direction, especially longitudinal

where it should be noted that the total mechanical strain i?nd transverge to th_e conduc'For. Gray an_d Bél!ntloduced

the sum of the mechanical strain resulting from the magnetiér,"’msve,rse |sotrop!c mgterlal properties into - a two-
loads and the mechanical strain resulting from the thermaﬁi'me"‘_s'Onal analysis _Wh_'Ch preserved t_he plane _stre_ss as-
contraction loads. In particular, it is seen that the componentSUMPtion. The analysis includes a detailed examination of
v, andy,, of the shear strain are zero. From the form of thethe usual simplifying assumption that the decrease of the

stress—strain relations, it is evident that in an orthotropic@i@! field through the windings is linear. _

magnetic solenoid the shear siress componengsand 7, In a very comprehensive treatment, Agxamined stress

are also zero. in superconducting solenoids from fabricatidwinding
The general stress balance equations for a body with §rés$, cooldown (thermal stress and operatior{magnetic

distributed force are well known. For a magnetic solenoid Strés$: Along with a brief discussion of the composite nature

given the above discussion, the nonzero components of stre€§ the windings, orthotropic material properties are intro-
reduce too, , oy, o,, andr,,. Accordingly, the most gen- duced. The shear stress is again assumed to be zero. A fun-
ro ’ z rz - 1

eral form of the stress equilibrium equations for a magnetidamentally two dimensional analysis is formulated for both

solenoid are plane stress and plane strain assumptions for the axial direc-
tion. The presence of axial forces is acknowledged and dis-

doy 7T, 00y LX. =0 cussed qualitatively. A comparison is made between the two-
ar a9z r o dimensional analysis and a three-dimensional finite element

(7) numerical calculation of an example coil which includes

9Tz 992 Tiz o _ axial forces.

ar iz £ In all of these analytical treatments, the axial stress is
where, in the case of thermal stress only, the distributed me&ither set to zero or introduced in an approximate way
chanical loadX is zero. through superposition. In a solenoid, the tangential stress and

strain are dominant in magnitude and relatively independent
of the axial stress, accounting for the relative lack of atten-
tion given to the axial stress. As coils become larger, the

The problem of solenoid stress and strain as formulatedxial stress becomes more important for magnet design. This
in the above equations has been addressed over an extendsdiue partly to the stress and strain dependence of high field
period of time with increasing generality. A good survey of superconductors. It is also due to the coupling of external
especially the earlier literature is given by Bobfovhe ma-  reinforcement to the axial stress distribution.

IV. HISTORICAL REVIEW
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The usual assumption in the preceding analyses is thatoil. The radial dependence of the axial load at the end of a
the average current density is a constant in the section of thepil redistributes to produce a relatively uniform axial load
solenoid for which the equations are being formulated. Thiover the central region of the solenoid. In this picture, the
corresponds to the case when a conductor of a given size isfluences tending to distort the center of a coil from a
wound with a constant amount of insulation, and possibly astraight cylindrical shape, including the nonuniform radial
constant amount of distributed reinforcement. A more genioading at the end of the coil, and the Poisson ratio stress, are
eral case would allow a nonuniform amount of distributedtaken to be relatively small. The assumption is made that the
reinforcement, resulting in a nonuniform current density insolenoid remains a right cylinder and this is expressed as a
the coil section. In the context of examining such a casegonstant value of the axial strain.

Mitchell and Mszanowski formulate the solenoid stress The only generality not addressed by the GPS analysis is
problem in three dimensions. As in the preceding two-shear. A formulation was demonstrated by Gatal.® in
dimensional analyses, simplifications are introduced by aswhich the shear component of the equations could be re-
suming zero shear stress and isotropic material propertietained by employing a power series form for both field and
The further assumption is made, stated as following the corstrain. The resulting mathematical formalism expands dra-
vention for pressure vessels, that the axial strain is constamgatically in complexity with the inclusion of shear, so much
through the windings. It is further noted that through a radialas to perhaps reach a point of diminishing returns between an
section of the windings, axial force balance is achieved whe@nalytical solution and a numerical solution. Thus, while the
the axial stress integrated over that section equals the applig@ssibility of a more general formalism exists, at least in a
axial load on the section. For the special case of a uniforngeries approximation, the experience has been that GPS of-
current density solenoid, the differential equation for thefers a useful and accessible treatment of the three-
axial stress is given and from the form of the equation andlimensional stress in solenoids. The derivation of the equa-
the numerical solutions that were obtained, general aspecti®ns was presented earlier for the mechanical Idadsre,

of the axial stress distribution in solenoids were inferred.the equations for both mechanical and thermal contraction
Namely, the axial stress was seen to be nonuniform, with &tress, together with the evaluation of the coefficients for the
monotonically decreasing value from the inside of the solePrimary configurations of application are given.

noid outward through the windings, and with the possibility

of a positive tension at the bore.

An examination of the axial stress distribution in sole-V. GENERALIZED PLANE STRAIN ASSUMPTION
noids, with and without external reinforcement, was made by
Markiewicz et al® It was noted that, directly from the con-
stitutive equation for the axial strain, the nonuniform distri-
bution of tangential and radial stress in a solenoid will
couple through the Poisson ratio to give a nonuniform axial
stress. The condition of a constant axial strain through th
central region of a solenoid is introduced on the physica ) . ; . L :

. . . . olenoid configurations of interest, is judged by comparison
grounds that, to a high degree, solenoids remain a right cyl§. . X
inder in operation. The requirement that in the absence o\f\”th numerical solutions.

. : . S . The dominant loads on a solenoid are the outward radial
axial loading, the Poisson ratio induced axial stress balances . X
: . component and the axial compression component of the Lor-
to a zero net axial force leads directly to a value of the

: . entz force. In a long solenoid, the radial force is relatively
constant axial strain. . . o
. . : uniform along the length and the axial force occurs primarily
The assumptions of constant axial strain and zero shear : ; L
. ) . : oward the ends of the coil. The primary response of a coil is
were then shown to give a full three-dimensional solution of,

the stress balance equations in a GPS analyEie material o expaqd radially and compress axially. T_he fundament_al
. S . assumption of the analysis is that the associated deformation
properties were assumed fully orthotropic, linear elastic. Th

) . : et'a]kes the initial right cylinder of the solenoid into a right
solutions for the mechanical stress were presented in general . . .
. e . cylinder in such a way that the displacement vector has com-
form with constant coefficients. The solution was demon- ; .
. ponents with the functional form
strated with examples.
From the results, a physical picture of the stress in a u=u(r),
solenoid emerges. The tangential stress dominates as a reac-
tion to the radial component of the Lorentz force. The tan-
gential stress is coupled through displacements to the radidlhis deformation maintains the lines of constanparallel
stress, which predominantly determine the inplane strainswith the z axis, and the planes of constanbhormal to thez
From the in-plane stress, the Poisson ratio results in an axialxis.
stress as well. The Poisson ratio axial stress combines with A single coil may be constructed as a compound coil
the axial stress induced by the axial loads, both magnetic andith a number of distinct radial sections in contact along
thermal, to give the total axial load. The radial magneticcommon cylindrical boundaries. The radial sections may be
force loading is relatively uniform in the central region of a distinguished by their material properties and current den-
solenoid, but decreases toward the end. In a long coil, thsity. Importantly, in coils with more than one radial section,
axial load originates predominately toward the end of thethe above assumption applies to all radial sections uniformly.

The objective leading to the GPS analysis is to find an

analytical solution to the stress balance equations that in-
cludes the essential aspects of the axial stress. The simplify-
fng assumption of GPS is introduced on the basis of general
hysical considerations. The validity of the assumption, and
e accuracy of the resulting solution to describe magnetic

®

w=w(z).
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For this assumed right cylinder deformation, it is ob-tion in axial strain, is sufficiently small in comparison with
served from the strain—displacement relations that the shedéne constant value in the absence of bending as to be seen as
strain y,, is zero, and from the form of the material proper- a variation about a first order constant value.
ties that the associated shear stress is zero. It is also seen that
the functional dependence of the normal strains is

e=¢/(r), VI. STRESS BALANCE EQUATION, GPS

APPROXIMATION
€g=€4(r), 9 _ _
From the functional form of the strain, the normal com-
€,= €,(2). ponents of the stress are reduced to functions of the radius

Therefore, the assumed right cylinder deformation leads t@nly- The approximation is made that the axial fiéig, and
the condition that at any given axial location the axial strainth® associated force density in the windings, are also
€, is a constant as a function of the radius, and that thidndependent ok and a function ofr only. Along with the

applies to both simple and compound coils. result that the shear stress is zero, the force balance equation
With the shear being zero, the second stress balandgnder the assumption of GPS takes the form
equation reduces to do, o,—0o,
+X,=0, (149
do, dr r
— +X,=0. (10 .
Jz whereX, is zero for the case of thermal stress only.

Using the stress—strain relations and the functional deperns. mechanical stress, general solution

dence of the strain, this equation is expressed as ) L _
The case of Lorentz force loading only is first examined.

The thermal contractions in the strain—displacement rela-
tions, Eq. (6), are then zero. Combining the strain—

L . . displacement with the stress—strain relations, Hg, the
The further assumption is made that the analysis applies to . . o .
. . . .. stress as a function of displacement is introduced into the

the central region of a long solenoid. The axial force density . .
: T . . stress balance equation to yield
X, in the central region is small, being zero at the midplane,

e,

CZZE

+X,=0. (11)

contributes a small amount to the total axial load, and is d( du u
taken to be zero in the present approximation. The result of  Crgy | gy | ~Ceoy +(Cram Cozd €= =13 4BA(r).
the right cylinder deformation and axial force assumption is (15)

that the axial strain is constant in the central region: The assumption is made that the radial distribution of the

€,=constant. (12 axial field is linear. This assumption is not fundamental to
the analysis and with changes in the following algebra a

Thus the assumptions imply a state of axial plane strain. . . .

The above discussion is formulated in terms of the me—hfgzgOtrggrfﬁéygggjgcfog?tﬁgtgsesgiid t(ijoenpﬁggek)r:aceen(;?ﬂj?e d
chanical stress and strain associated with magnetic forcl% pted. ACY ¢ np . .
in some detaif. The axial field of a coil or coil section of

loads, in recognition of the importance of magnetic loads in L
solenoid stress. The same discussion can be applied to tﬁ%mstant current density is given by E@6) where the con-

thermal case with the conclusion that the axial mechanical?n;r::%ngngufsoi daerera%(ialtjzrmmed by the values Bf at the
strain from thermal loads is constant within a single coil '
section, and that the total axial strain is constant over all B,(r)=B.—Cgr. (16)

radial sections of a compound coil: Incorporating Eq(16) in Eq. (15) yields Eq.(17), where the

€'= constant. (13  customary variablek is the anisotropy factor given in
Essential to this constant axial strain result is the as—Eq' (18):
sumption of a right cylinder deformation. Another descrip- d?u du 2 u  JBe 3G , (Ciz—Cyp)
tion of this assumption is that no bending is induced in the oz Tar YT Ci r C, re= Ci €z
solenoid by the magnetic loads or thermal contraction loads. (17)

In fact, there are several ways that a degree of bending is
induced. The radial force is not entirely uniform along the kzzﬁ_
length of a solenoid, but typically decreases toward the ends. Crr
The radial force is highly nonuniform through the thickness  The general solution of Eq17) may be written in the
of a coil, falling off nearly linearly with radius, resulting in a fgrm

nonuniform Poisson ratio stress. The axial force atthe end of | k ) 3

a coil is not uniform through the thickness of a coil, but ~ U=D1r Dol "+ Aser +Aoro+Agr?, (19

typically has a roughly parabolic shape. Also, the axial therwhere the known constants are given as
mal contraction may differ in different radial sections of a
1 (Crz_Caz)

coil. The assumption made here is that the bending associ- A=— 5
ated with each of these conditions, and the associated varia- (1-k%) Crr

(18
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1 J,B. inside and outside radius will be zero. For a coil with several
Ap=— 4-Kx3 C, (200 radial sections, additional conditions result from the continu-
" ity of the radial stress and radial displacement at the interface
1 J,Co between each section. In this way, the number of equations
A3:(9Tk2_)c_rr' which results is equal to the number of coefficieBtsAn

additional equation is required to determine the unknown

By inspection, there are three singular values of the an
isotropy parametek. Whenk has the value 1, 2, or 3, the
associated constart is replaced in the general solution by
the corresponding functioA in Egs.(21), (22), or (23), re-
spectively:

value of the axial strain.

Using the concept of a plane through the coil at a given

axial location, the static equilibrium of the coil requires that
the local product of stress times area accumulated over the
plane is equal to the total applied axial load. Thus, on a plane

1(C.,—C through the coil at an axial positian
Ay(r)=— LCnCad,, (21)
2 Ci
an
3,B. f “2mrodr=F,, (29
AZ(r)__Z C Inr (22 a
rr
+Co wherea,; anda,, ; are the inside and outside radii of a coll
As(r)=+g—Inr. (23)  which hasn distinct radial sections, anfd, is the total axial
rr

_ _ _ Lorentz force between the plane and the end of the coil over
In the remainder of the analysis, nonsingular valuek afe || radial sections. This equation provides the additional con-
assumed. dition necessary to determine the axial strain.

The solution for the displacement is used in E@$.and
(1) to yield expressions for the three-dimensional state of
stress and strain as follows:

1. Coefficients for single section coil

60=D1I’k71+ D2r7k71+Alez+A2r+A3l’2, (24)

For a single section coil with constant current density

and uniform material properties, the boundary conditions are

€, =KD r* 1—KD,r *"1+ A e, + 2A,r +3Asr?, (25
05=(CpytKCpy)D1r* 14 (Cpy—KCpy)Dor 71

+(ChptCpr)Ar€,+(Chyt2Cy)Agr
+(Cpot3Cy)Asr?+Cye,, (26)

o, =(Cp+ kCrr)Dlrk71+(C0r_ kCrr)D2r7k7l
+(Cy+ Ci)Are,+ (Cor+2C,)Ayr

+(Cp+3C)Asr2+Cye,, (27

o,=0 atr=a, (30)
o,=0 atr=a,, (3D
a:
fzzwrazdr:Fz. (32
ap

Evaluating Eq(27) at the inner radius results in

a;1Dy+ a0+ asze,= by, (33

where the constants are given by

0,=(Cyt kCrz)Dlrk_1+ (Cp,—KCy)Dyr Tkt
+(Cpr+Cr)Ar€,+(Cy+2C, ) Agr

+(Cy+3C,)Agr2+C, e, . (28

These equations, together with the value of the coeffi-
cientsD,; andD,, plus the value of the constant stradp,
determine the distribution of stress and strain in a given coil.

B. Equations for coefficients

The general solution to the stress balance equation may
be applied to a coil with a number of distinct, yet mechani-
cally connected radial sections, the sections being differenti-
ated by mechanical properties and current density. The solu-
tion for the coefficient®; andD, results from the boundary
conditions associated with each radial coil section. For a
stand-alone coil with a single section, the radial stress at the

a;3=(Cy+kCyp)ak
ap= (Cer_ kCrr)aIk_l'

(34)
a 3= (C0r+ Crr)Al+ Crz )
by=—(Cy+2C,)Aza; — (Cy +3C,,)Agal.

Evaluating Eq(27) at the outer radius results in

a21D1+a22D2+ 323&'2: bz, (35)

where the constants are given by

a=(Cq + kcrr)a;711
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a=(Cy —kCy)ag %,

Q3= a3, 36
by=—(Cp+2C,)Aza,— (Cy +3C,)Agal.
Integrating Eq(28) in Eq. (32) results in

(37

agDq+agD,+agze,=bg,

where the constants are given by

k+1 k+1

2 T3
az1=(Cy+kCyy) K+ 1 )

k1 g

2
a32:(C02_kCI’Z) _k+l ’
2 2

a—a)
azz=[(Cp+Ci)A1+C,l T

—k+1
1

(39)

l:z ag_ai
bszﬁ_(ceﬂ' 2Crz)A2T

az—aj
- (C02+ 3Crz)A3T .

The set of linear Eqg33), (35), and(37) may be written
in matrix form

[ann ap a|[p, by
az; Ay a||Da|=|b; (39
a3 azp agsll € by
which is solved in the standard way as
D, aj; ap apg| ! b,
Do|=|ax az ax by |. (40)
L €2 dz; Az Aags bs

2. Coefficients for single section coil with external
reinforcement

For a single section coil with reinforcement, the bound-
ary conditions are applied to the coil section and the rein-

forcement.
oM=0 atr=a, (41)
oM=0¢? atr=a,, (42)
ut=u? atr=a,, (43)
o?=0 atr=a;. (44)

The axial force equilibrium applies to the coil and rein-

forcement

ag
J 2mrodr=F,. (45

ag
Evaluating Eq.(27) at the inner radius results in
a11D1+ a12D2+ a15GZ: bl, (46)

where the constants are given by
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a;1=(Cy+kCyp)al ™,
a = (Cf)r_ kCrr)aIk71,

B (47)
a-15_ (Cer+ Crr)A1+ Crz ’
by=—(Cy+2C,)Aza; —(Cy +3C, ) Agal.

Evaluating Eq(27) at the interface between the coil and

the reinforcement results in

apDq+ayDy+ayD ) +ayD )+ azse,=by, (48
where the constants are given by
321:(C0r+kcrr)agil!
az=(Cyp—kCy)a,
_ ’ 1~ K -1
ayp=—(Cy+k'C/a; -,
(49

ag=—(Ch—k'Clya %,
Ays= [(C€r+ Crr)Al+ Crz:l - [(C;)r + Cr,r)Ai"' Cr,z]v
by=—(Cp+2C;)Azay— (Cy+3C,;)Aga’

and where the unprimed quantities refer to the coil and the
primed quantities refer to the reinforcement.

Evaluating Eq(19) for the displacement at the interface
results in

a31D1+agDy+azsDy+asD;+ asse,=bs, (50
where the constants are given by

ag=as,

ag=2a; ",

83z~ — a'él ,
(51)

!

Ak
=48z
_ ’
ags=Aja,—Ajay,
b3: - Azag_ A3ag.

Evaluating Eq(27) at the outside radius of the reinforce-
ment results in

a43D i + a44Dé+ ays€,= 0, (52)
where the constants are given by
_ ’ 2l k'—1
a43_(C0r+k Crr)as '
a44:(c/0r_klcr,r)a§k - (53

a45: (C;}r"‘ C;r)AJ,_‘i‘ CIIZ .

Integrating Eq.(28) through coil and reinforcement in
Eq. (45) results in

ag)D1+agD,+assD; +asD;+ asse, = bs, (54)
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where the constants are given by

K+l .kt
B 2 a1
aSl_(Cez+kCrz) K+1 y
a_k+1_aIk+1
a5,=(Cy,—KCy,) v
k/+1_ak’+1
_ ' P~ 3 2
As3= (Co 7K' Cr)) — 7
B ’ , , agk,+l_a2—k,+l
a54=(Cp,=K'Cr)) — 77—
2 2

a—a;
as5=[(Cp+Ci)A1+C,l T

a3—aj

2 ’

+[(Cp+ Cr) A1+ Crll

3 3

a;—ay

bs=—(Cy,+2C,)A; 3

ag_a‘ll F,
—(Cyt+ 3CI’Z)A3T + E

The set of linear Eqg46), (48), (50), (52), and(54) may

be written in matrix form

(59

a;; app O 0 a5l D 1] b,
Ay @y A3 Ay aAxs|| Do b,
Az Az Az Ay ags||Di|=|b; (56)
0 O ay3 ay ag|| Dy b,
| 851 8sp 8s3 Asq4 8ss|| €, | | bs |
" ag a, 0O O O 0 o0
az; Ay Ay axy O 0 O
az ag; ag azg O 0 O
0 0 Auz Ay g5 Ay O
0 0 as3 asq sz ase O
0 0 e 0 azmzn-1
L Q2n+11 Q2n+12

with the solution, as previously, by matrix inversion.

C. Thermal stress, general solution

Markiewicz et al.

which is solved in the standard way as

D:] [ay a, 0 0 as] by]
D> Q1 Az QAzz Ay Aps b,
Di|=|as as az as as bs|. (57
D, 0 0 a3 au ags b,

| €2 |8s1 8sp A8s3 Asq Ass| | bs |

3. Coefficients for a general multisection coil

For a multisection coil, in which any section may be a
reinforcement region, the boundary conditions are applied to
each section.

oP=0 atr=a, (58
ol=cU*Y atr=a,,; j=1, n—1 (59)
ull=ul* atr=a,; j=1, n-1 (60)
V=0 atr=a, (61)

The axial force equilibrium applies to all coil sections:

an
f onrodr=F,. (62)

ap

The derivation of the equations for the coefficients pro-
ceeds as in the previous cases. The coefficient matrix for the
system of 21+ 1 equations and unknowns is given by

Qin+1
Aon+1
Azn+1
Qan+1

(63
Ason+1

Q2n2n Qon2n+1

Qon+1n Aon+in+1

is zero in the force balance equation, Ef4). The strain
displacement, Eq6) and stress—strain relations, Ed) are
combined, and the resulting stress as a function of displace-

The case of thermal stress proceeds in a manner similanent, thermal contraction, and the constant total axial strain
to the mechanical stress. The distributed mechanical¥gad is introduced into the stress balance equation to yield
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du du ,u C,-C Cyp—C C
e 2= _ rz 0z t0t+ or 06 2:ﬂ.
raztar k . c. €, c. a AT k c., (65)
+ Cre =Cor a, AT The general solution of Eq64) may be written in the
Crr form
Crz_Cez _ k -k tot,
+ . a,AT, (64) U=Dqr“+Dor “+Ase, T+ A,r, (66)
rr
where the anisotropy factdris given by where the known constants are given as
1 Ci;—Cy
M=" 12 C,
6
oL (CumCo)aAT+(Cy~Co)adT+(Crpm CraAT ©7
21—k [ '

The solution is singular whekiequals one. In this case the constahia Eq. (67) are replaced in the general solution by
the functionsA in Eq. (68):

Crz_ 0z
27 ¢, In(r)
1 (Cp—CypapAT+(C —=Cy ), AT+ (C;,—Cpp) a, AT

Cir

Aq(r)=—
(68)

Az(r)—— In(r).

The solution for the displacement is introduced throughbut here with no applied axial magnetic load, the net internal
Egs.(1) and(6) to yield the three-dimensional state of stressaxial stress in the central region of a coil must balance to
and strain given in Eqg69)—(73), together with Eq(13): Zero.

€p=Dr* 14 Dr I+ AP A — a AT (69)

1 1 ot 1. Coefficients for single section coil

_ler - _Dzkr_ - +AlEZO+A2_CYrAT (70) . . . i .
For a single section coil with constant current density

05=(Cppt KCpy)D1r* 1+ (Cyy—kCpy)Dor ¥71 and uniform material properties, the boundary conditions are
+(Cpyt Cor)ALeL 4+ (Cygt Cy)Ag+ Core o=0 atr=a (74)
—CypapAT—Cpa, AT—Cpa,AT (71 o=0 atr=a, (75
07 =(Cyr+KC,)D1r* 14+ (Cp—KkCyp)Dor %71 f:zzwrazdr:o. (76)
1

+(Cp+Cr )AL+ (Ch+Cr) A+ Crre
(CortCrdhue ™ (Cort Cr)hzt Craey Evaluating Eq(72) at the inner radius results in

—CpapAT—C, o, AT—C,,a,AT (72

ayDi+a;Dy+age =hy, (77
0,=(Cpt KCrp)D1r* 1+ (Cp— KCpp)Dor 71 where the constants are given by
+(CprtCro)Are; +(Cppt Crp) Ap+ Crpe” a31=(Cy+kCyal
—CpyapAT—C,,a,AT—C,a,AT. (73 8= (Cy—kC,)ar L,
(78)

These equations, together with the value of the coeffi-  a,,=(C, +C,,)A;+C,,,
cientsD, andD,, plus the value of the constant strai}',
determine the stress and strain in the coil section. b1=—(Cp+Crr)Ar+ChapAT+CrarAT+Cra,AT.
Evaluating Eq(72) at the outer radius results in
a.21D 1 + a22D2+ a236t0t: b2 y (79)
D. Equations for coefficients

where the constants are given by
The solution of equations for the coefficients proceeds

essentially in the same manner as the case of magnetic loads, @21=(Cgr+ kCy)a5™,
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a=(Cy —kCy)ag %, a1,=(Co—kCr)ag 4,
N (80) (91)
23 o1 a15=(Cp +Cy)A1+Cyz,
b2: bl'
Integrating Eq(73) in Eq. (76) results in b1==(Cort Cr)Axt CorapATHCrra AT+ Crpa AT,
gD+ gD+ Agze®=bs, (81) Evaluating Eq(72) at the interface between the coil and

the reinforcement results in
where the constants are given by

|§+ 1_ a|](-+ 1 a21D 1 + a22D2+ a23D :’L + a24Dé+ a256t20t= b2 y (92)
az;=(Cy,+kCyy) K+ 1 ) .
where the constants are given by
—k+1_ o—k+1
az=(Cy—kC )i ay=(Cy+kCpp)ak™?
32 774 rz —k+1 ’ 21 or /42
al—a? (82 ay,=(Cy—kCpyla %,
a33=[(Cp+Ci)A1+C,l 2
ay3=—(Cj +k'C/)as 1,
b3=—[(Cy,+Cr)Ay—CpayAT—Cya, AT (93
aj—aj 2= —(Cj—k'Clay ¥ ™,
—C,a,AT] 5
) . a25:[(C0r+Crr)Al+Crz]_[(c,gr+cr,r)A;/L+Cr,z]-
The set of linear Eqg77), (79), and(81) may be written
in matrix form b,=[(Cp+C/)A;—ChapAT—C/ a/AT—C/,a,AT]
-all alz a13 Dl bl —[(Cor—I—Crr)Az—CeraoAT—C”arAT—CrZaZAT],
21 822 8z Dtgt - EZ (83 and where the unprimed quantities refer to the coil and the
[a3; Az agsllcz 3 primed quantities refer to the reinforcement.
which is solved in the standard way as Eva_luating Eq(66) for the displacement at the interface
. results in
D, aj; ap a3 b,
D,y =|ay, ay ax b, |. (84) agD+agD,+agD]+agD)+agse, =bg, (94)
tot
€ b
- Q31 83 Ag ° where the constants are given by
2. Coefficients for single section coil with external az= a'§ az= az_k ,
reinforcement
For a single section coil with reinforcement, the bound- ~ @3=—a5  ag=—a," , (95
ary conditions are applied to the coil section and the rein- , )
forcement. azs=A13;—A1dy  b3=Aza—Azas.
(,51): 0 atr=a; (85) Evaluating Eq(72) at the outside radius of the reinforce-
ment results in
oM=0¢? atr=a, (86) o
a.43D 1+ a.44D ,+ ays€ Ol— b4 y (96)
uP=ul® atr=a, (87) ! ? ‘
5 where the constants are given by
o?=0 atr=a,4 (88)
_ ’ I~ k'—1
The axial force equilibrium applies to the coil and rein- A= (Cytk'Crag -,
forcement. , D k-1
ag a44=(Cp —k'Cyp)ag J
27mro,dr=0 89 S, (97)
J‘al ‘ ( ) a45:(cer+crr)A1+CrZ!
Evaluating Eq(72) at the inner radius results in ba=—(Cl+Cl)AL+ChalAT+Cl a/AT+ClalAT.
+ + tot__ ) ] ) ]
31Dy +a5Do+ase; = by, (%0 Integrating Eq.(73) through coil and reinforcement in
where the constants are given by Eq. (89) results in
a;1=(Cy +kCy)aj ™, asD 1 +asD,+agD ] +asDy+asse, = bs, (98)
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where the constants are given by TABLE II. Material properties assumed for finite element and generalized
1 1 plane strain analysis.
—a
2 1
a5, =(Cy,TkC,,) v Property Coil Reinforcement
a, gkt E"((EE’?)) % 125
1 r
a57=(Cpr=KCrp) —— 77— E,(GPa) 60 140
G,,(GPa) 12 35
K+1_ gk +1 Vo 0.330 0.275
3 2 0.200 0.190
_ ’ + Kk’ ! Vyz
a53=(Cp+K'Crp) k'+1 Yoy 0.330 0.275
Vg 0.174 0.181
agk Tl Kt (99 Vyr 0.240 0.213
a54:(c’02_k,cr,z) ) , Vs 0.208 0.203
a AT —0.003 15 —0.003 00
2 2 a, AT —0.004 50 —0.003 30
ay—a; a,AT —0.003 70 —0.003 20
as5=[(Cp+Ci2)A1+Cy,l 2 :
(G Cryarcr %
0z rz/M1 z 2 O'(r]):‘TEH—l) atr=aj+1; j=1, n-1 (103
b5=—[(C02+CrZ)A2—ngagAT—Crza'rAT ugj):ul((]+1) at r:a]+1, J:l, n—l (104)
2 2
ay—a (n)— _
—CLat AT] = 5= [(Clyt Cl,) Ay = Clrpar)AT oy =0 atr=an, (109
The axial force equilibrium applies to all coil sections.
—Cla/AT—C. a'AT] 22 an+1
rz& 22%7 2 2mr azdrzo (106)
ap

The set of linear Eqg90), (92), (94), (96), and(98) may

. . : The derivation of the equations for the coefficients pro-
be written in matrix form

ceeds as in the previous cases. The coefficient matrix has the

fap a;z 0 0 as]rp b form given by Eq.(63).
1 1
A1 Ay Ay Ay A D
2L e TmomeA TR o EZ (og VIl EXAMPLE CALCULATIONS
31 83 Qazz Azs4 Azs 1|=|D3
0 0 awm au a D, b, The results of a GPS calculation are compared with a
R I be finite element calculation for a superconducting magnet con-
LAs1 sy Asz Asq Ass]- 7 sisting of a single solenoid coil with external reinforcement.
which is solved in the standard way as The parameters of the coil_are giyen in Tablell, vyhefeand
_ I a, are the inside and outside radius of the windings, respec-
"D, ap ap 0 0 ag by tively, a, and a; are the inside and outside radius of the
D, Ay1 Ayy Apz Ay Ags b, rre]inforcement, Iandh is thi Ien'gtg.. The C|l<m'en'|[ (zlgnsiWisd
D/ |-l v 8w e 8. & b the average value over the winding pack, including conduc-
D} 31 Fs2 a3 Ta O3S b3 (109 tor and insulation. The material properties given in Table Il
- 0 0 au au ass b4 are similarly average properties over the windings and over
L €2 | 51 @sp Asz Asy Ass 5 the reinfor_cement region. The propertie_s are chargcteristic of
an epoxy impregnated, wire wound coil construction.
3. Coefficients for a general multisection coil The largest loads on a superconducting magnet are from

) ) o ) ] the magnetic force. The axial, radial, and tangential compo-
_ For a multisection coil, in which any section may be apenis of stress are given in Fig. 1. The tangential stress,
relnforcement region, the boundary conditions are applied thich reacts the radial outward component of the force, is
each section. the dominant stress component. In this example, the conduc-
oM=0 atr=a, (102  tor region of the windings is supported by the external rein-
forcement, which displays an increased stress in proportion
to E,. The axial stress is also significant in magnitude. The
value of the axial stress in the reinforcement is an indication

TABLE |. Magnet parameters of a simple solenoid with external relnforce-of the proportion of the axial load that is supported by the

ment. reinforcement. The corresponding strain components for the
a, a, as h/2 J magnetic force load are given in Fig. 2.
(mm) (mm) (mm) (mm) (A/mm?) The thermal stress, which develops as a result of
250 300 310 500 150 cooldown from room temperature to liquid helium operating

temperature, is shown in Fig. 3. Both the axial and tangential

Downloaded 13 Apr 2001 to 146.201.226.127. Redistribution subject to AIP copyright, see http://ojps.aip.org/japol/japcr.jsp



7050 J. Appl. Phys., Vol. 86, No. 12, 15 December 1999
2500 T :
o Axial Stress, FEA
200.0 - s Radial Stress, FEA
. o Tangent.ial Stress, FEA4
150.0 + Generalized Plane Strain
z 100.0 +
gw’ 50.0 T
£
& 0.0 vty + t } e
2806 o 260, 270 280 290 300 310
-50.0 ¥ .
Radius (mm)
-100.0 +
docancooa
-150.0 +

Markiewicz et al.

30.0 T
200
Q
10.0 +
0.0 \ ; : e i
£.10.0230 260 270 280 290 300 310
%_20'0 1 Radius (mm)
w
£-300 +
“ 400 L © Axial Stress, FEA
a Radial Stress, FEA
-50.0 + o Tangential Stress, FEA
600 L Generalized Plane Strain 8332233382
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FIG. 3. Axial, radial, and tangential stress components due to differential
FIG. 1. Axial, radial, and tangential stress components due to magnetiehermal contraction during cooldown.

force loading.

stress distributions represent a zero net force balance in the
coil. The thermal strain components are given in Fig. 4. The
tangential strain reflects the nonisotropic nature of the ther-
mal contraction, with the inside and the outside of the coil
being drawn toward the center.

The correspondence between the finite element and GPS
calculations may be assessed from the figures. The major
simplifying assumption of GPS is the assumption of a con-
stant axial strain. The validity of the assumption for this
particular example is shown with greater resolution in Figs. 5
and 6, for the magnetic force and thermal contraction, re-
spectively. In both cases, it is the total axial strain that is

0.0003 +

0'0002£\hnnnnnnnn

0.0001 +

0.0000

Strain

250
-0.0001 +
-0.0002 +

-0.0003 +

-0.0004 L

260

t t |

80 290
Radius (mm) 0 310
©  Axial Strain, FEA '
& Radial Strain, FEA
@ Tangential Strain, FEA doooeesccs

Generalized Plane Strain

shown. which for the case of thermal contraction is the sunft!G- 4. Axial, radial, and tangential strain components due to differential

of the mechanical strain resulting from the thermal contrac-
tion loads and the thermal contraction strain. For the case of
magnetic force, the degree of bending in a coil and the de-
viation from a constant value of the axial strain, will depend
in general on all the coils in a set of coils which produce a
magnetic field at the coil in question.

A constant value of axial strain is equivalent to a right
cylinder deformation. Nonconstant values as shown in the
finite element results indicate that some degree of bending
does occur. Although small, potential sources of bending
were examined to gain further insight. In order to identify the
source of the observed bending, the same example coil was
used with the radial and axial force distributions applied
separately. The results are given in Fig. 7. The radial force,
being produced by the axial field, is relatively constant over
the central region of a long solenoid, but decreases toward

SL11x107° T
21.12x10°
1.13x10° +

1.14x107

thermal contraction during cooldown.

-e— Axial Strain, FEA
— Axial Strain, GPS

Strain

-1.15x10°
1162107 T

1.17x10° %

! ! f I |

-1.18x10°
250

} } } —
280 290 300 310

Radius (mm)

FIG. 5. Total axial strain comparison for magnetic force loading.
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# 0.0000 : : l | | -3.531x10°F

2 7 0 310

-0.0005 + Radius (mm) -3.532x10°4
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.0.0015 L 250

FIG. 2. Axial, radial, and tangential strain components due to magnetic

force lo

ading.

t } t t + |
260 270 280 290 300 310
Radius (mm)

FIG. 6. Total axial strain comparison for thermal contraction loading.
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three-dimensional stress in long solenoids. Knowledge of the

3.0x10" W + -8.0x10” axial stress and the redistribution of the axial stress into ex-
. -~ Fy as Computed, F,=0 | . ternal reinforcement is of particular interest in coils of in-
-3.1x10° 1 8~F, as Computed, F,=0 p -8.1x10 creasing size and field strength. The analysis has served to
32x10" ¢ L ogono® focus on the extent to which the axial strain in solenoid coils
g - g is a constant, and to examine the relationship between the
% 33x10% 4 — 1 g0t ® condition of zero shear stress and the constant axial strain
condition.
3.4x10° 4 T -8.4x10"
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