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Abstract—A statistical continuum mechanics formulation is presented to predict the inelastic
behavior of a medium consisting of two isotropic phases. The phase distribution and morphology
are represented by a two-point probability function. The isotropic behavior of the single phase
medium is represented by a power law relationship between the strain rate and the resolved local
shear stress. It is assumed that the elastic contribution to deformation is negligible. A Green’s
function solution to the equations of stress equilibrium is used to obtain the constitutive law for
the heterogeneous medium. This relationship links the local velocity gradient to the macroscopic
velocity gradient and local viscoplastic modulus. The statistical continuum theory is introduced
into the localization relation to obtain a closed form solution. Using a Taylor series expansion an
approximate solution is obtained and compared to the Taylor’s upper-bound for the inelastic
effective modulus. The model is applied for the two classical cases of spherical and unidirectional
discontinuous fiber-reinforced two-phase media with varying size and orientation. © 1998 Published
by Elsevier Science Ltd. All rights reserved

I. INTRODUCTION

Voigt (1889) and Reuss (1929) proposed two methods to calculate the effective elastic
moduli of polycrystals. The first takes the average of the elastic moduli of the crystallites
over all orientations as effective moduli of the polycrystal, whereas the second uses the
average of the elastic compliances. Hill (1952) proved that the two results are the upper
and the lower bounds to the true effective elastic moduli of the polycrystal. Adding the
additional information that the medium is macroisotropic and the elastic moduli of
neighboring grains are uncorrelated, Hashin and Shtrikman (1962) found narrower
bounds which is classified as 2nd order bounds, whereas the bounds of Voigt and Reuss
are 1st order bounds. Taylor (1938) set up a uniform strain model for large deformation
polycrystals. The objective was to estimate the effective moduli of a polycrystalline solid
from single crystallites.

Models based upon Taylor’s assumption of uniform plastic strain (or strain rate),
similar to Voigt’s, together with the modern texture theory, have been used to predict the
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mechanical anisotropy of polycrystals for several decades now. Comparisons between the
simulations of these models and the measured texture evolution have also exhibited first-
order agreement (Hill, 1965; Beran, 1968; Kroner, 1972, 1987). Corrections to Taylor’s
upper-bound were provided in different forms based on Hill's self-consistent model
(Bishop and Hill, 1951; Hill, 1965, 1967; Hutchinson, 1976). The objective was to estimate
the effective moduli of composites or polycrystalline solids from the mechanical behavior
of their constituents. In such modeling efforts a specific morphology and phase distribu-
tion was assumed for the constituents.

Kroner (1987) developed a model to investigate the elastic properties of polycrystalline
materials under small deformation using statistical continuum mechanics analysis.
Adams et al. (1989) applied this theory to viscoplastic deformation of heterogeneous
polycrystalline materials. These new models take into account the heterogeneity of strain
(or strain rate) in the microstructure. Microstructure can be defined as the spatial dis-
tribution of phases, particles, and crystalline orientation. The traditional methods of
representation of heterogeneity in microstructures concentrated on the formulation of
anisotropy (or texture). In the case of multi-phase media an average based on the
volume fractions of the different phases have usually been used as an approximation to
the solution by assuming independent texture evolution for each phase. For poly-
crystalline materials, Orientation Distribution Functions (ODF), which are used to
quantify texture, are found inadequate for such representation. The statistical model for
large deformation of polycrystalline materials requires that the information for the
microstructure not be limited to lattice orientations and also include the spatial correla-
tions. The spatial correlations are referred to as the orientation coherence functions
(OCF) (Adams et al., 1989). The statistical viewpoint takes OCFs to be n-point prob-
ability density functions, which describe the correlation of lattice orientations between
points in the polycrystal separated by specified vectors. Since each single orientation
represents a distinct level of heterogeneity, the structure can be assumed to contain a
number of states of orientations. The characterization of such a complex structure based
on statistical formulation focused on structural changes and as a result limited further
understanding of probability functions and their limitation to predict effective properties
(Beran et al., 1996). To explore this further and concentrate on the property of prob-
ability functions, a two phase medium is chosen for exploration and it is assumed that
each phase is isotropic. A two point probability density function is used to represent the
spatial correlation. In a study of two phase media by Corson (1974a,b), it was found
that an exponential form can adequately represent the two point probability density
function for most microstructures which exhibit a global isotropy. An anisotropic ver-
sion of such a formulation is adopted in this paper to represent the probability func-
tions. Such a procedure is important since the simulation of the continuum mechanics
theory requires a closed form for the probability function which can correctly represent
the microstructure. This can also increase the efficiency and speed of the numerical
simulation. Molinari et al. (1987) used a two-Green’s-function solution in a self-con-
sistent scheme to analyze the large deformation polycrystal viscoplasticity. They used the
tangent-modulus formulation in their self-consistent approach to predict texture evolu-
tion. In the present paper a secant modulus version of that formulation for the isotropic
constitutive law is selected to describe the behavior of each phase. The Green’s function
solution to the field equations proposed by Molinari et al. (1987) is a first step of
deriving the final closed form solution to the statistical theory.
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II. SINGLE PHASE ISOTROPIC BEHAVIOR

Following Hutchinson (1976), a power-law steady-state creep law is chosen for each
phase. The isotropic constitutive law (elastic-rates are neglected) is defined independently

for each phase:
D a\" ,
5= o
o}
where D* and o* are the strain rate and stress invariants for the reference configuration, n

is the inverse strain rate sensitivity parameter (> >1). The invariants of the strain-rate
tensor D and the deviatoric stress tensor s are defined by

, 12
D = <§DﬁDﬁ> (2)
3 12
o= (355:) G
3D 3D* n=11] ,
Dy = [5 } LS = [2 — (a*) -]ijkISkl = Mji1Su 4
=17
20 20 D\
Sy = [3 Di|lylekl [Eﬁ <-b—*> IjriDit = NygiDia (5)
Ty = (51k8ﬂ + 8idjk) {6)
Nirt = Njirr = Nyjie = Ny (7

where, M = [N]'i and it contains 4th rank symmetry as in eqn (7), I is the isotropic fourth
rank tensor. Equations (4) and (5) can also be described in the short notation:

D =MS (8)
S =ND. )]

The secant modulus is defined as the slope of the stress—strain rate curve at a certain strain
rate level as shown in Fig. 1. A full Cauchy stress tensor is the summation of the devia-
toric stress and the hydrostatic pressure:

T;j = NyuDi — pdy (10)
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Fig. 1. Definition of the secant modulus for the two isotropic viscoplastic phases.

II. GREEN’S FUNCTION SOLUTIONS: THE INTERACTION LAW

The local behavior has been determined for each phase according to eqn (8). A macro-
scopic homogeneous velocity gradient L—,j = 1;; and a macroscopic pressure 5 are imposed
on the medium at infinity. It is intended to find the local velocity gradient Ly = v;;. The
velocity gradient tensor Ly is a sum of the symmetrical part, strain-rate tensor Dy, and the
antisymmetrical part, rate-of-rotation tensor wy;. Due to the symmetry properties of the
inelastic modulus Ny given by eqn (7), Nywiy = 0 and therefore:

NigeiLis = Niyei(Dry + wrs) = NyyDyy. (11
Locally, equilibrium is required throughout the medium. From eqn (10):
Ty = (NywtDra)y;—p,i = (NywiLut) j — pi = 0 (12)
Let us separate Ny into a uniform part Ng'kz and a spatially dependent part ZVW:

Ny = Ny + Ny (13)

Y

NY is defined as:

N = [ mNgL, o (14

where £ is a set of state variables and f{k) is the probability density for the occurrence of
state 4 in the medium. For a two-isotropic-phase media, represents phase 1 and 2, thus
S(h) is the corresponding volume fraction. As a result:
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Ng'kI =fiN }jkl(l_’) + /2N, ?jkl(l—‘) (15)

fitfa=1 : (16)

N}jk,(L_) and Ng.k,(f,) represent the secant moduli of phase 1 and phase 2, respectively, at
the velocity gradient level of L.

Substituting eqn (13) into the eqn (12):

Ng‘k]Lk[,j —-pi+F= 0 : 17

Fi = [NyL) J (18)

where F; can be considered as a “fictitious” body force. The incompressibility condition
dictates:
L;=0. (19)

Equations (17) and (19) represent a set of four independent equations to be solved for
four unknowns v; and p (velocity and pressure). This system of equations can be solved by
the Green’s function method. The medium is assumed to be infinite. The Green’s furnc-
tions in the infinite space are Gy(r —r') and Hy(r —r’), where r and r’ represent points in
space. At infinity, |[r — ¥| — oo, Gy and Hj should approach zero. The G; and Hj are
solutions to the equations following eqns (20) and (21) which are derived from eqns (17)
and (19) as:

N Gl (& = ¥') = Hipy st = ¥') + 8 = 1') =0 (20)

i
Gimi(r — 1) =0. (21)
The function §(r — r') is the Dirac function located at r’ the term 8;,8(r — r) represents the

ith component of a unit force acting at ¥’ and being parallel to the direction m for a fixed
m. Then the solutions to the eqns (17) and (19) are represented by:

vi(r) = ; + L , Gy(r — ¥)F;(r")dr’ (22)
px)=p+ Jr/ VHi(r —r)F,(r)dr'. (23)
e

Finally, we expect a closed form solution for the local velocity gradient L; = v;;. After
differentiating the two sides of eqn (22), we obtain the interaction law:

Ly(r) = f’ik -+ J.,/ VGij,k(r - l'/){]Vj[rs(L(l'/), h(rl))Lrs(rl)]ldr,

) ) 4)
= le + J,J VGij,kI(r - l'/)M],S(L(l'/), h(r/))Lrs(r/)dr/
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The physical meaning of the interaction law is that the local velocity gradient at r differs
from the imposed macroscopic velocity gradient by the convolution over the infinite
volume ¥ of a polarized deviatoric stress, &, which depends on the local velocity gradient
and the state at ¥’ € V. This polarized stress is defined as:

Gu(r') = ]@M(L(r’), h(X)) Ls(¥). 25

It represents the effect on material point r by the difference between the local velocity
gradient at r and the imposed macroscopic uniform velocity  gradient.
Gy (r — V) Nigrs(L(U), (X)) Ly (') represents the total outcome. Gy x(r'—r’) has a singular
value at r =r'. A proper solution to this problem is to construct solutions for a finite
small volume ¥, surrounding point r, then calculate the average value of velocity gradient
to replace the value at r (Kroner, 1987). In the final numerical calculation, a very small
volume compared to the whole specimen is used in order to obtain a solution. This small
volume is chosen to be one percent of the average size of the second phase as shown later.
Let L%(r) be this averaged value:

-1 N ,
L9 = Ly +— j J Gia(® = V)R (L), B )) Los(e ). 26)
Vc reV, Jrev

For eqn (26), there is an abbreviated notation:

Lo(r) = L 4 G(r — ¢')*N(r)L(r). 27
The symmetrical part of eqn (27) defines the local strain-rate tensor

D%(r) = D + I'(r — ¥')*N(r)LO(x) (28)
where

T = %(ij,i! + Gyt + Gitie + Gitgie)- (29)

The antisymmetrical part defines the total spin tensor

wo(r) = W+ A(r — ¢')*N(r)LO(r) (30)
where

1
Ay = Z(ij,u — Gyt + Gt — Gije)- (31

To solve the Green’s functions Gy and Hy, a Fourier transformation of eqns {20) and (21)
is used:

—Ngklkjklékm(k) + ikiﬁm(k) +6im =0 (32)

ki Gim(K) = 0. (33)
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A linear set of equations are derived which are solved for Gy, (k) and H,,(k). Using the
property of the inverse Fourier transform:

1 -
Gt =) = =gz | Ik Gy 0k (4
/ J 'y —ik(r—]

The solution for this problem is already given for an isotropic incompressible medium
(Molinari et al., 1987).

Nf}m = %(3%511 + 8udje) = wlys , (36)

where u depends on the properties of phase 1, phase 2 and their volume fractions.

=2(v |22 + v, |32 ), Here v,, v, are volume fractions, Dy, D, o1, 05 are described in
l'l' 2 a2 B

2 =31
eqns (2) and (3).
Then:
Gri(k) = b= ks (37)
ni - [.Lkz ni [Lk4 nvy
Hu(k) = v-1 K. (38)

k2

In later sections, a methodology is presented for the numerical simulation of the results.
In the following the evaluation of the convolution integrals G(r —r') * N(r')LO(r') is
described. First, the medium is divided into a number of small cubes of volume A3 shown
as V. and V/ in Fig. 2. For a fixed r at V., we consider a second cube of volume ¥ which
contains r'. The full integral around ¥ € V can be taken as the summation of all cubes
V., € V except V.. Figure 2 shows two cubes ¥, and V/, where ¢ and ¢ represent the
center positions of each cube. Additional details for the calculation of G and H is pre-
sented elsewhere (Ahzi, 1987).

G(r —r') = N@"LYr) = %J , L , Gijiu(r — ¥')Fy(x')dr'dr
cdrev, Jre

1 / o
- _—eJre v, L;’U"EVC Gy a(r — ) Fu(r')dr :I }dr 39)

1 / / /
=y [ 7J J Gijsa(r — ') Fy(x)dr dr}.
viev | " e Jree Jrer,

Now, Fy(r') = N(r)L°(r’) is taken to be constant over V.. Applying the inverse Fourier
transform of Gy;, the final solution for eqn (39) is obtained by using eqn (40). The result is
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Fig. 2. Two elements geometry of the convolution integral problem G = F.

presented as an integral solution over infinite region followed by some differential process
(Morris, 1970; Muram, 1987).

LJ J Gy i — ') Fy(r')dr'dr = ff—!J J Gyji(r — r')dr'dr. (40)
Vc reV, JreV, Vc reV, JreV,

IV. PROBABILITY FUNCTION AND STATISTICAL FORMULATIONS

Equat1on (27) can be written as ‘a Taylor series expansion about L (assuming
L — L < L9 Keeping only the first few terms, we get:

L =L +Gx@EL) +6 @)L +5 c/’(L)(L")2+ >)LY? (41)

L0=L0—1L. (42)

The zeroth-order term, L% = L is called the Taylor term (Taylor, 1938). Here only the
first-order correction to the homogeneous Taylor solution is considered. In the final
solution, only the first order correction to the Taylor’s term is calculated. The second
order correction was calculated by using the 1terat1ve method and was found to be negli-
gible. Then eqn (41) becomes:

L) =L+ G+ &(L) =L + G(r — r) x N(L, h(r"))L. 43)

In the following the statistical concept is introduced with proper correlation functions to
relate the local to global properties. Let us consider the ensemble average of the local
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velocity gradients for many particles belonging to the same state 4. Each particle is sur-
rounded by a structure which is different from all other particles even if they are at the
same state. This results in a distinctive velocity gradient for each particle. Here we neglect
the difference of the local velocity gradient belonging to the particles with the same state
and assume that all these particles have one local velocity gradient value which is calcu-
lated from the ensemble average. Symbol <>, denotes the ensemble average over particles
at state 4. :

N

O) =520

i=1

Combining the ensemble average with eqn (40), we get:
(L°®), =L+ G(r — ) % (6(L, i), = L+ G(r — r')  (N(L, 4(r'))),L (44)

which represents the first-order statistical localization law. The ensemble average of the
space dependent modulus (N(L, A(r'))), can be described in terms of the conditional 2-
point probability density function of state. o

(N, B}, = J A& € hir € hy)N(L, h)dh (45)

St € hjr € hy;) means the probability that ¥’ belongs to state 4 given that r is at state 4,. In
this paper, 4 has two values: h; and h,, representing isotropic phase 1 and phase 2,
respectively, then:

(N, b)), =0 € hlr € )N (L) + At € holr € h)NAL) o (48)

(N, b))y, = A’ € hlr € B)N' (L) + A € halr € hy)NA(L) (47)
(L®), =L +6G+@ 1) «(NEL, ), L (48)
(LW}, =L+ G+ —r) = (N, hr)), L. 49)

It is easy to note that the solution to this problem lies in the existence of the proper
probability function for a specific medium. For a two-isotropic-phase medium, we can use
the functional form presented by Corson (19744,b) (Miller, 1969).

Py(r) = o + Byexp(—cyr™) ) (50)

i=1,2; j=1,2; Pj(r) means the probability occurrence of one point in phase / and the
other point which is located a distance (r) away in phase j. It is easy to see that the equa-
tion is orientation independent or P; is only a function of the magnitude of r — 1’ as
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shown in eqn (50). «; and B; depend on the volume fractions ¥, ¥, of the two phases
(Table 1). ¢, and ny are empirical constants determined by a least squares fit for the
measured data and the functional form chosen for Pj.

S and Py are different: f is defined as a conditional probability, whereas P;; is absolute
probability. The relationship between fand P;; are presented as:

f(l‘/ € hlil' [ h1) = P11/V1 f(r’ [ hz]l‘ € h1) = P12/V1

51
¥ € hir € b) = Poa/V; S € holr € by) = P Vs, b
Macroscopic deviatoric Cauchy stress X is related to macroscopic velocity gradient L by
substituting eqns (48) and (49) into eqn (52). This relationship is called macroscopic con-
stitutive law.

L= J Sfh)oy),dh = J FB)N (L, (LY}, dh = N}jk,(Lﬁ,}hl+V2N§k,(L2,)hz (52)

V. RESULTS AND SIMULATION

The statistical theory is applied to a two-phase medium with both phases assumed iso-
tropic. The medium is divided into a number of small identical cubic elements. The
descritization process follows the general rule that that there should be enough number of
elements within each region of investigation so that the final structure can produce a sta-
tistical representation of the microstructure. In this analysis the cubic specimen with side
length / was divided into n x n x n smaller cubes such that » = ¢ x //g, where g is the
average representative size of the inclusions or the second phase. The constant ¢ was
determined by trial and error to minimize the error. In this process a value ¢ = 100 is
chosen. It is assumed that each element represents one microstructural state (one phase).
Imposing a macroscopic velocity gradient L, it is intended to calculate the velocity gra-
dient in particles of state 4;, the velocity gradient in particles of state 4, and macroscopic
deviatoric Cauchy stress X.

Two computer generated microstructures are used for the purpose of this study. The
first microstructure (Fig. 3. microstructure a) is generated by allocating centers of circles
of radii r at random location until a specific volume fraction is obtained. The second
microstructure (Fig. 3. microstructure b) is produced by allocating centers of equivalent
narrow rectangles at random location until desired volume fraction is reached.

Table 1. Limiting conditions on two-point probability functions

Boundary conditions Resultant coefficients
Py r=20 r— o0 : o= - s By =
Py Vi V2 V2 1416}
Py 0 ViV, 2% -"Vs
Py 0 ", V2 4L

P, 22 Vz V22 V22 Vl VZ
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Fig. 3. Two kinds of two-isotropic-phase mediums.

The stresses and strain rates are normalized using o’ = o/go and D' = D/ D, for both
phases in the medium. Such a normalization reduces the power law relation (eqn (1)) to:

D’ Ll )
ﬁ—&ﬂ )

where Dy = D*/ Dy and o = 0" /00. The normalized reference strain rate and stress are
then unitless quantities and are Dj = 1 for both phases, and of =1 for phase 1 and
of = 0.33 for phase 7 in both microstructures a and b. A power of n, and n, are chosen
for the two phases. The volume fraction of phase 1 for microstructure 2 was vy =0.62
and for microstructure b V1 = 0.74.

Figures 4 and 5 show the results of the analysis to produce macroscopic stress—strain
rate for the microstructures in Fig. 3. The parameters for the second phase material were
chosen such that the microstructure behaves as a composite with the second phase as hard
reinforcements. All simulations were performed to calculate the first order correction to
the zeroth order term “Taylor’s term”. Further analysis results showed that the second

1 T
— — — - upper bound 1T06
statistical 1
— - — - - lower bound / /'
/
T0.4
0./
+0.2
— i 0
-5.0 -3.0 -1.0 1.0

log(D’)

Fig. 4. Normalized macroscopic stress versus logarithm of normalized macroscopic strain rate for the niicro-
structure a.
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~+0.2
} 0
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Fig. 5. Normalized macroscopic stress versus logarithm of normalized macroscopic strain rate for the micro-
structure b,

compared to the upper bound (Taylor’s zeroth term) and the lower bound. The upper and
lower bound calculation are analogous to Voigt (1889), and Reuss (1929) models. The
lower bound is calculated by assuming that the stresses are the same in the two phases and
the macroscopic strain-rate is the sum of V;Z, and VaL,, where ¥V and ¥, are volume
fractions, ; and L, are strain-rates for the two phases, respectively. The results show that
the material is harder (higher level of stress) once pulled in the fiber direction (Fig. 5).

VI. SUMMARY AND CONCLUSION

This paper focuses on the application of the statistical continuum inelasticity theory to
a medium consisting of two isotropic phases.

The simulation of the mode] presents results for two well known cases where in one case
the microstructure is random and in the second case it is anisotropic. The statistical con-
tinuum model shows a maximum of (25%) difference from Taylor’s upper bound for the
random microstructure. On the other hand the prediction for unidirectionally oriented
narrow rectangular structures showed a drastic difference of (66%) once the specimen was
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It is found that the success of the theory depends on the existence of analytical equation
for the probability functions. The probability functions for more complex cases requires
more intensive work.

The present theory uses the secant-modulus form of the single-crystal constitutive law
which is best suited to the problem of creep since the stress is small compared to the yield
stress. For large stress and strain-rate problems, the tangent-modulus may be more sui-
table (Adams et al., 1989). The theory can only be applied to problems with small per-
turbations from the uniform strain-rate approximation of the Taylor’s theory.
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