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The plastic behavior of a superconducting material is investigated and the corresponding
elastoplastic formulation for the distribution of stress and strain in a superconducting solenoid
magnet is presented. The analysis calculates stress and strain at the midsection, where tangential
stress exhibits its maximum value and shear stress is negligible. The prediction of stress and strain
is essential for both the mechanical and electrical design of high-field superconducting magnets
containing NBSn superconductor. The concept of plasticity is introduced for the first time in the
context of magnet design for N®n conductor and compared to alternative approaches using
conventional elasticity theory. Individual coil sections of a superconducting magnet can be
reinforced by an outer section of structural material, the effect of which is included in this
formulation. The results show that the elasticity approach using the “secant modulus method” does
not fully predict the strain distribution; however, it can be used to approximate the stresses. It is
shown that for an accurate strain prediction the true nonlinear elastoplastic nature of the
superconducting materials should be considered and proper yield criteria should be used. The
inaccurate prediction of straingangential or radial can affect critical current density and the
evaluation of the reinforcements. @996 American Institute of Physics.
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I. INTRODUCTION each coil is assumed here. High-field coils can have addi-

tional support structure on the outer diameter to constrain the

~ There is a long history of attempts to understand andyingings, reducing the level of stress and strain experienced
improve the performance of adiabatically stable, epoxy imy,y, the conductor. The stress analysis treats one individual

pregnated superconducting magnets. The tendency of Coils Q) ang its associated reinforcement structure. The total
quench prematurely, at relatively low fractions of the critical rass in the windings has several sources. Stress is devel-
current, or to exhibit training behavior, in which the coil oped during winding of the conductor or possibly during
progressively reaches higher fields in a series of runs, is ofyinging of an overbanding support structure. Stress is also
ten attributeq tg mechapicgl issues. Friptio_nal motion of thedeveloped during the cooling of the magnet to the cryogenic
conductor within the windings or of slipping between the herating temperature due to differences in thermal contrac-
windings and adjacent supporting structure can result igio of the constituent materials. The overriding dominant
heating of the superconductor leading to quench. Stressyce of stress is the magnetic stress from the distributed
analysis, and a knowledge of stress, strain, and displacemepf,ant, force in the windings, and for simplicity is the only

of the windings, is therefore central to the design of epoxysiress considered in this analysis.

impregnated superconducting magnets. Lower-field coils  pravious work has primarily assumed elastic be-
usually employ NbTi composite superconductors, which arg,ior1-5 garly analysis, which included a treatment of the
essentially linear in their stress—strain characteristics to thgyiarnal reinforcement structure, assumed only plane stress

level of stress typically employed. Higher-field coils com- .,ngition, treating only the dominant tangential and radial
monly employ & N§Sn composite superconductor, in which gyress and setting the axial stress to ZeTbis analysis was

the NbySn is formed by a high-temperature heat treatment Ofjg\ejoped further to include plane stress and plane strain

the drawn wire. The resulting conductor is significantly NON-golutions, and providing solutions to the winding and thermal

!inear in its stress—stra!n charactgristics at t'he usu_al Operatiress as wefl.A three-dimensional treatment including axial
ing levels of stress. This mechanical behavior motivates aQiass and strain, but limited to regions of a coil with zero

effort to apply plasticity theory to the stress analysis of high-ghear was presented as a generalized plane strain sdlution.
field ma_lgnets. . o A detailed plasticity analysis of a cylindrical structure with a
A high-field magnet is often a nested set of individual, o4y force distribution characteristic of a magnet winding
mechanically independent coils on separate support stiuGyas developed recenfland compared to elasticity analysis
tures(Fig. 1). The case of a single constant current density i”only for the tangential componett Here the complete for-

mulation of the plasticity analysis as applicable to magnet
dElectronic mail: vaghar@magnet.fsu.edu technology is provided. A comparison between the results of
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FIG. 2. Stress—strain curve of a typical ductile material.

winding composite of an epoxy impregnated magnet may
FIG. 1. Schematic di . ati duct talso be described as an intrinsic elastoplastic composite.
-+ Schemalic diagram of a representafive superconducting magnet- - A jdealization of a stress—strain curve obtained for a

ductile material is shown in Fig. 2. The plot of applied stress

elastic analysis and elastoplastic analysis, and between diyersus total strain usually has an initial linear region in
ferent assumptions for the yield criteria for the plastic analy-Wh'Ch the material is elastic. As the stress is increased past

sis, is presented. This analysis includes the formulation foP0iNt &, the stress—strain curve ceases to be linear and the
both tangential and transverse directions. material begins to yield. A simplification will be the use of

an elastic linear strain-hardening curve. The initial modulus

for the elastic region i&, and the secondary modulus for the

plastic region ish. For an approximation of the elastoplastic
The information required for the application of plasticity behavior two alternative elastic paths can be chosen. To

theory is contained in the stress—strain curve of a uniaxiateach the stress level,, theoc path with a slope of modu-

tensile test. lus E can be chosen. It is obvious that this approximation
The nature of the stress—strain curve of;8lib compos- assumes a smaller strain and does not predict the correct state

ite superconductor is related to the composition and processf strain and stress. For this reason another path can be cho-

ing of the conductor. The composite superconductor includesen from the origin to poinb. The slope of this line is

a bronze portion around the actual 8o filaments, a pure defined as the secant modulls. The secant modulus ap-

copper stabilizer component, and a small fraction of barrierproach assumes a final state of stress which must be cor-

This composite conductor is processed at a temperature neascted iteratively.

700 °C to form the superconductor. The copper and bronze

components are fully annealed. Upon eventual cool down to

liquid-helium temperature, thermal differential contraction !ll. FORMULATION OF EQUATIONS

places the copper in tension, possibly to the point of yield

depending on the qletalled conﬂggranon Qf the cor}ductor_. Irfirst introduced. One coil of a solenoid is assumed to have

the laboratory tensile test, the initial loading force is applied.

. i : jpner radius; and outer radiug, and a reinforcement at the
to a composite already in a complex state of internal stress. (f'

the copper stabilizer is close to vield. it is understandable utside of the coil with outer radius;. The coil is made up
bp Hzer | yield, s u . of elastically orthotropic, linearly work hardening material as

that a limited elastic region is displayed in the stress—strai hown in Fig. 3, while the reinforcement is a pure elastic
curve. Eventually the copper and bronze yield, and the nearl aterial
linear characteristic displayed by the stress—strain curve a The geometry is axisymmetric in nature, and since the

h'gh‘?r levels of stress is related to the,8h itself remaining body force is present only in the radial direction all shear
elastic and may partly be a result of work hardening in the

. . components are zero. The stress tensor is reduced to three
copper and bronze. The hBn composite conductor is there- P

fore a complex entity which has simultaneous elastic an omponents in thé, r andz directions. For linear orthotro-
) Pl€ Y : . hic elastic material the components of stress and strain are
plastic material components. Such a composite materi

. S . . lat Hooke’s |
might be called intrinsically elastoplastic composite. The elated by Hooke's law,

Il. STRESS-STRAIN CURVE

The elasticity formulation of the coil stress analysis is

windings of an adiabatically stable high-field magnet typi- 3
cally combine thg Ngsn composite conductor with an Ei:ﬁ_E v ﬁ, i=1,23, 1)
epoxy—glass matrix for insulation and support. For the wind- Ei =1 =

ing composite as a whole, while the conductor may yield at 7!
the strain levels under consideration, the epoxy—glass matriwhereo;, €, andE; are stress, strain, and elastic modulus

will remain elastic. Thus, on a more macroscopic level, thefor i =6, r andz directions andy;; is Poisson’s ratio for,
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o do, o,—0y

ar . +X,=0, (7)
Erein.
€ whereX, is the body force. Magnetic body force is directly
o—¢ response of the reinforcement proportional to the product of current density and magnetic
Reinforcement field. In this article the stress analysis is performed for the
(Isotropic) midsection of the solenoid, in which case the magnetic field

can be approximated as a linear function of radius,

B,=J(a— Br), 8

where J is the current density and and B are arbitrary

constants which can be determined from the current density
and the boundary conditions specified for the field. The cur-
rent densityJ is assumed to be constant through each single

€
o—¢ response of the coil

Coil (orthotropic)

with magnetic body force coil; therefore, the magnetic body force is a linear function
of radius,
FIG. 3. Schematic diagram representing the two regions of a magnet. The
corresponding mechanical behavior is shown as stress—strain curve. X,=JB,= J2( a—fr). (9)

Equilibrium equation is then reduced to the following:

j=0,r andz (i#j). For either plane stress or plane strain do, o,—0y

assumption, the strain componentséandr directions re- ar T +J3%(a—pr)=0. (10
duce to
By substituting Eq.(6) into Eqg. (2) stresses are calcu-
ey=La,—Vo,, €=Lk%0,—Vay,, (2) lated in terms of displacements. Substituting the stresses into
Eq. (100 and with the plane stress or strain assumption a
where for plane stress differential equation for the radial displacement can be ob-
tained,
1 1 Vrg  Vor
R=—, L=—, V=—=—, (3) u’ u L2k —\/2
E Eo BB W'+ —— K == Pa—pr) ———. (11)

and for plane strain
The solution to this differential equation gives the displace-

. 1-v,v,, ment,
-—F
c c
— (1 2Kk2_\/2 1k 2k
= - +
1=y, u=(L%=VH Lk+V ' Lk—V '
L=—"7—, 4
Ey J? o B
Sl Dl e A (12
L \4—-k 9—-k '
Vet VzgVrz  Vort VozVzr
B E, N E, ' and hence the stresses in the elastic region,
and for both plane stress and plane strain or=Cir* T cor K14 325 r + 32S,r 2,
112 (13
kz(E) ©) 0g=C kr* 1= cokr K14 32T r + 32T ,r2,
1R

wherec, andc, are arbitrary constant§,;, S,, T;, andT,
The factork defines the mechanical anisotropy of elasticare constants calculated from the mechanical properties and
moduli in ther—4 plane. magnetic fields of the coil,
Strains are related to the displacement according to the

following relations: s__ 2+V a _(3+V B
e L) =i >~ L) 9—k?’
du u (14)
“Tarr T © e[ Y e (12,3 B
o KT T ame T T oo

whereu is the displacement in the radiad)(direction.
For an axisymmetric solenoid the equilibrium equations  The theory of plasticity is formulated in terms of flow
reduce to rules which give the increments of plastic strain in terms of
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applied stress. The flow rule is a description of the yieldinggg, the case of plane stress, the tangential stfegsis a
process in the material, and as such is dependent on the yieldaximum and radial stressr() is a minimum @,>0> o).
criterion or yield function for the material. The flow rules gqp plane strain, the axial stressj is always less than
associated with the yield functions of von Mises, Tresca, andangential stressof,>o,>0>0,). Thus, the Tresca yield
Hill are used to derive equations for the stresses in the SUsiterion reduces to the simple form of

perconducting magnets.

f(oi))=304—0,)=30. (22

A. von Mises yield criterion Differentiating the Tresca yield function with respect to

) ) o the stress components, and using the flow rule, plastic strains
For the well-known von Mises yield criterion, the flow gre found in terms of effective plastic strain,

rule relates the increments of plastic strdifﬁ to the com-

H 1
ponents of the deviator stress ten§yr= o; — 503j; , h=—eP=¢P. (23
3 deP It can be seen that the two yield criteria for the case of
def; =5 5. Si (15  plane strain are derived from very similar formulations and
€ hence both are treated here at the same time.
The effective stress, has the form of the von Mises yield An elastic linear strain-hardening constitutive relation is

function, which in the absence of shear stress reduces to Used to represent the stress—strain history in the plastic re-
gion. For such a material the relationship between the effec-

o2=Y (04— 0,)%+(0,— 0,)°+(0,—0p)?]. (16)  tive plastic strain and effective stress is

For the plane strain condition, assuming the von Mises _ ~ . ..p (24)
. . . . e Y '
yield function, a closed-form solution can be derived for the
tangential and radial components of stress and strain. Essewhere o, is the effective stressyy is the yield stress for
tial to the derivation is the observation that for the planeuniaxial tensile teste is the effective plastic strain, amdis
strain condition the plastic increment of the axial strd#¥  a parameter which can be calculated from the initial modulus
becomes zero. Using E(}L5) it is obvious that the deviatoric E and the secondary modulus for the plastic redign
stress in the corresponding directianmust be zero. The
axial stress can then be calculated from Eh

. c= ﬂ
o,=35(0+0y), (17) - . .
From the strain-displacement relationships, Hj, the
therefore, the components of the deviator stress tensor ammmpatibility equation is defined as

simply proportional to the effective stress. By substituting
Eq. (17) into Eqg. (16) the von Mises vyield criterion reduces dey €€y

(25

to ar T (26)
2 where strains are the total strains. In the plastic region the
Op— 0 =—= 0p. (18)  total strain is a combination of elastic and plastic strains,
V3
€=€+e, e=€5+ €, (27)

The flow rule is then integrated directly to give an algebraic
relation between the plastic strain components and the effe

. ) DA Giheree® and eP stand for elastic and plastic strain.
tive strain which is independent of the stresses,

By substituting Eq(27) into Eq. (26), the compatibility
equation reduces to
f r2 19 def) eh—eP de§j €5—€

W_I— r +W+ r =0. (28)

B. Tresca yield criterion
Rewriting Eq. (28), using Egs.(2), (10), (18), (19), (22),

For the Tresca vyield criterion, flow rule has the form of (23), and (24), a unified differential equation can be ob-

tained,
D b af(aij)
deij=2d6 T’ (20)
7ij deb €l 1 [ €} 1

. . . . Fl_+2Fl_+F2_J —dl’+F3—
which relates the increments of plastic strain components © dr r r r r
deﬁ- to increments of effective plastic straite” and partial (29
derivatives of yield functionf(o;;) with respect to stress nr. 5
componentsr;; . The Tresca yield function has the form of +Fy = +JIFs+J7Fer =0,

f(0i)) =3 Tmax— Tmin) = 30 - (21)  whereF, throughF4 are
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Fi=1+{%Lc, Fo={%Le(1-K?),
Fs=2{Lay, F4={L(1-K)oy,

Fs=—[(L—=V)+L(1-k?]a,

L
Fo=|(L=V)+5 (1-K)| B,

(30

TABLE |. Parameters for example coil.

and where{ represents a yield parameter which is one forp ..o ratip

Tresca and 23 for von Mises.

It should be noted that the same equations are valid fokagnetic field at outer radifis
the case of plane stress for the Tresca criterion, with th&urrent density
associated definition dR, V, andL according to Eq(3).

Solution of the differential Eq(29) providesef

€h=canyr"+c n,r "2+ J2H r + J2Hr2+ Hg,

80 —
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FIG. 4. Plane stress analysis using Tresca yield critei@ntangential stresgp) radial stress(c) tangential strain; andd) radial strain.
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61

1.0
0.8

0.6
0.3

0.0

(31

Name Symbol Value Unit
Inner radiu8 a; 14.50 cm
Outer radiud a, 17.70 cm
Outer radiu ag 18.40 cm
Young modulus in tangential directibn E, 105.00 GPa
Young modulus in radial directién E, 35.00 GPa
Young modulu8 Erein 200.00 GPa
Yield stres8 oy 75.00 MPa
Internal pressure P; 0.00 MPa
Poisson ratid Vo 0.25
Vrein 0.30
Magnetic field at inner radids B, 14.50 T
B, 10.00 T
J 113.00  A/mnt
Secondary plastic modultis h 21.00 GPa
Secant modulus in tangential direction Eg, 45.00 GPa
Secant modulus in radial directidn E,, 15.00 GPa

aFor coil.
bFor reinforcement.
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FIG. 5. Deviation from elastic analysis for the same loading conditions. Th
plastic analysis is performed using Tresca yield criterion and plane stral

assumption{a) tangential stress anih) tangential strain.

1+ §2Lck2)1’2

From Eg.(31) the stresses in the plastic region are

0= £20(Car M+ Cgr"2) + 2S5 + 32S,r2+ S5 In 1 + S,
(33
o= C2c[C3(1+ Ny "+ cy(1+n,)r"2]+J%Tor

+ 32T 4%+ Ts Inr+Tg,

whereS; throughSg and T throughTg are constants,

S;={%cH;—a, S,=3(c{?H,+p),

Ss={’cHs+ oy, Ss={’CH,,
(34)
Te=C%CH(+S;, T,=0%CH,+S,,

Ts=Ss, Te={CHz+Se+ Loy .

For the plane stress assumption with the von Mises yield
function, a closed-form solution cannot be obtained. This
situation is described for a more general case of Hill's crite-
rion below.

C. Hill's yield criterion

For an orthotropic material, the von Mises yield function
is generalized to Hill's orthotropic yield function which in
the principal magnet coordinates is written

f(o'ij)E%[F(O-H_O-r)2+G(Ur_o'z)2+ H(UZ_ 0-6)2]: %!
(35

whereF, G, andH are related to the tensile yield stresses in
the principal directions. An epoxy impregnated magnet
winding is nearly transversely isotropic, and this assumption
is used in the following. For a transversely isotropic material

{F=H), Hill's function reduces to

0%:%[(0'0_0})24_ 77(0'r_0'z)2+(0'z_0-0)2]' (36)

Note that the effective yield stress is equal to the tangential

wherec; andc, are arbitrary constants that can be deter-yjeld stress for a uniaxial tensile test. The parametés a

mined from the boundary conditions amt}, throughH,,

andn,, andn,

are constants,

[(L=V)+L(1-K)]a

Y 3+ Lc(4-kY)

_=2[(L=V)+(LI2)(1-K*)1B

=

o L
T
n1:_1+

8+¢°Lc(9—K?) '

2
v, H“:g Lc2(1—k3) 7Y

1+ %Lck?\ Y2
1+%Le )

J. Appl. Phys., Vol. 80, No. 4, 15 August 1996

measure of anisotropy and may be written as

G o
n=E=2(—y" -1, (37

whereo,, andoy, are yield stresses in tangential and radial
directions.

The more general formulation of plasticity is based on a
flow rule of the form

af(aij)
(90'”'

def; =d\ , (38

where the increments of plastic strain are related through the
scalar differential quantityd\) to the derivatives of the
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FIG. 6. Comparison between secant and elastic—plastic Mises analysis for plane strain conditiofe) tangential stresgp) radial stress(c) tangential
strain; and(d) radial strain.

yield function. The flow rule for the transversely isotropic IV. RESULTS AND DISCUSSION
material is then obtained by substituting the yield function
into the general form of the flow rule. The elastoplastic analysis is investigated for a;®tb
Using the proportional loading condition, the differential superconducting coil with reinforcement. The parameters of
form of the flow rule may be integrated directly to give an the coil and reinforcement are presented in Table I. Calcula-
algebraic equation for the plastic strain components. It igions were made using elastoplastic theory with von Mises,
possible to use Hooke’s law, the equilibrium equation, andlresca, and Hill's yield criteria. These results are compared
the constitutive equation to eliminate strains and arrive awith that of the elasticity theory using the secant modulus.
two coupled nonlinear first-order differential equations for Equations(33) (for plastic region and (13) (for elastic re-
the two components of stress, gion) are used to calculate stresses based on elastoplastic
analysis and Eq(13) is used to calculate stresses based on
elastic analysis. Equatiori39) is used to calculate the
stresses numerically based on the plastic analysis and Hill's
(orthotropig yield criterion. Once the stresses are calculated,
These differential equations are solved using a numericadtrains can be determined separately for the elastic and plas-
schemé. tic regions.

do,
W:FZ(Uﬁvar)- (39

(4]
WZFl(Uo,Ur),
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FIG. 7. Comparison between secant and elastic—plasbic Mises analysis for plane stress conditiof@ tangential stresgp) radial stress(c) tangential
strain; and(d) radial strain.

To present the results two normalized paramefeend  there is a direct correlation between the current density and

J, are defined such that for the fully elastic case at the onsehe resulting magnetic body forces,(henced,) can be as-

of yielding, J, becomes zero and for the fully plastic cads¢  sumed to be a controlling parameter in this study.

becomes equal to one. In this formulation the two boundaries Figure 5 shows a comparison between the elastic analy-

R=0 and 1 refer to inner and outer rada,(,a,), sis using the original elastic modul&sand the elastoplastic
case. The analysis is performed to a current density at which

(40) the material becomes fully plastic. The results show a large
error in the values obtained for the tangential stiaim error

HereJ, is the current density at the onset of yieldifag the of about 30%. For this reason we limit our analysis to the
inner radiug andJ,, is the current density for complete plas- case of secant modulus and its comparison to elastoplastic

ticity. analysis.

Figure 4 presents a parametric study which includes the Figs. 6 and 7 show the distribution of stresses and strains
effect of plasticity on the distribution of the two componentsthrough the coil with plane strain and plane stress conditions
of stress and strain. The effect of plasticity and its spread ifor two cases of elastic analysis using the secant modulus
examined for different values of current densily Since  and elastoplastic analysis. Results show similar behavior for

r—a;
S ay-ay’

_37dy
N .
Jp_Jy
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FIG. 8. Comparison between Tresca and von Mises yield criterion for plane stress cor(ditimmgential stresgp) radial stress{c) tangential strain; and
(b) radial strain.

o, with a difference of less than 10%. Radial stress)( and &b)] and tangential straifFig. 8(c)] is small; however,
distribution shows an even smaller difference. the results for the radial strain show a large differeffeig.
The results of the analysis for the tangential strain dis-8(d)].
tribution show a difference of about 10% for the plane stress  The above calculations were performed assuming an iso-
condition[Fig. 7(c)]. This difference is not only an error in tropic yield stress in the windings. The implications of an
predicting the mechanical strain, but can also influence therthotropic yield criterion are shown in Fig. 9, where Hill's
electrical performance of the magnet because the critical cussield criterion is used for a range of values pin Eq. (37).
rent density is strain sensitive. The difference in radial straimAnisotropy(#>1) in general results in a decrease in the dis-
is dramatically largefFigs. d) and 7d)] and it behaves tribution of radial stress and an increase in the distribution of
quite different in the elastoplastic analysis compared to thatangential stresFigs. 9a) and 9b)]. The material studied is
of elastic analysis. transversely isotropic and has a low modulus in transverse
A comparison is performed between the two yield crite-direction (radial and axial This results in a decrease in the
ria for the case of plane stress. Figure 8 shows the stressealue of the radial stress. Both components of stfeddlial
and strains for the von Mises and Tresca yield criteria. Theand tangential decrease in their magnitude as the material
results show that the difference for the stregdeigs. §a) becomes more anisotrodiEigs. 9c¢) and 9d)]. The analysis
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FIG. 9. Plane stress analysis using Hill's yield criterion for completely pla@jid¢angential stresgb) radial stressfc) tangential strain; an¢tl) radial strain.

also shows a 20% difference in predicted tangential stressxplores the true nature of the stress—strain curve, and once
between the case of isotropy, for whiej=1, and the aniso- implemented the stress state can be predicted with no further
tropic case for whichy=4. assumptions.

This work produced the formulation based on classical
rate independent plasticity. Further work should seek solu-
tions which include the effect of strain rate in a unified in-

Classical plasticity theory together with related yield cri- elastic formulation. Additional experimental data is needed
teria including Hill's orthotropic yield function is reviewed for the constants required in the implementation of the Hill's
and a complete elastoplastic analysis is performed for thgield criterion such that the theory can be fully exploited.
NbsSn superconducting coil. The results are compared to
elastic solutions based on the elastic modwuand an al-
ternative secant modullg. This analysis shows that the ~D: Montgomery, Solenoid Magnet Desigr(Wiley-Interscience, New

. : . York, 1969.
elastic solution based on elastlg modulgs cannot produce a,_frBu,kha?d’ J. Appl. Physs, 357 (1975.
correct state of stress and strain. Elastic solution based 0PH. Brechna, Superconducting Magnet Systert8pringer, New York,
secant modulus provides the stress state with minimal error;1973. . _ _ _
however. it cannot be used to calculate the strain. Further- S. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body

! . T (Holden-Day, San Francisco, 1963

more, the dgtermlnatlon of the secant modulus requires &,  caicote, Introduction to Continuum Mechanio®an Nostrand, New
process of trial and error whereas the elastoplastic analysisyork, 1969.

V. CONCLUSION
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