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Abstract—An analytical solution for the stress
analysis of superconducting solenoids is given which
reflects the full spatial variation of Lorentz body forces
and includes shear stress components. The solution is
based on power series expansions of the Lorentz body
forces and the displacements which in turn gives the
strains and stresses, including shear stress components.
This solution is applicable to the windings and
reinforcement layers of magnets and is compared to a
finite element method using a 7 T sample magnet with
reinforcement.

I. INTRODUCTION

An analytical formulation of the stress analysis of
superconducting solenoids is presented which is applicable
.throughout the windings of a coil, and includes the shear
stress in addition to the normal stress components. As the
size and ficld strength of high field solencids increase,
knowledge of thc stress distribution beyond the central
region of the windings becomes increasingly important. This
is especially true for coils with external reinforcement, where
the  maximum shear stress between the coil and
reinforcement occurs toward the end of the coil. Previous
analytical solutions provide the stress distribution near the
mid-plane of a solenoid, neglecting shear.

Early analyses of stress at the mid-planc of a solenoid
were limited 1o tangential and radial stress. A planc siress
analysis was presented including external reinforcement {173
Analytical solutions were exiended 10 inciude plain stress
and plain strain assumptions, and were applied to thermal
and winding stress in addition 10 magnetic siress [2]). The
extension of the analysis 1o include axial stress was made in
the generalized plain strain  solution [3). The basic
assumption in all these analyses was zero. shear stress,
limiting the applicability of the solutions Lo a neighborhood
of the mid-planc. A sel of equates has been presented
previously to treat the three dimensional stress distribution
generally, including shear stress, based on minimization of
sirain energy. These equations were solved numerically by
finite difference methods {4).

The present resulis employ a power series expansion o
approximale the axial and radial Lorentz force distribution
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throughout the windings. The force distribution is computed
separately and the force components arc {it to a power series
with characteristic radial dependence for each component,
Fundamental to the analysis is the use of a similar power
series expansion for the components of the displacement.
Equations are formulated and solved for the displacements,
from which the components of strain and corresponding
stress are derived,

The formulation is applied by way of cxample to a single
coll with exiernal reinforcement.  Typical orthotropic
material properties are assumed for the windings and
reinforcement regions. The results are compared to finite
element calculations.

II. SOLUTION FORMULATION

The windings and reinforcement layers of a
superconducting solenoid, as shown in Fig. 1, are treated as
homogeneous, orthotropic linearly-clastic maierials. The
distributed Lorentz force, X, the body force vector, act on the
windings of the magnet. The related stress equilibrium
equations can be derived in cylindrical coordinaies as (5]
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Fig. 1. Single Solenoid with Reinforcement.
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The stress-strain relationships for orthotropic materials can
be written in terms of material parameters as
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The compliance matrix from (2} can be inverted into the
stiffness matrix found in Hooke's law. From the form of the
compliance matrix, Hooke's law for orthotropic materials
takes the form

g, = C':f g i,j =1,2,3. (3)
Oy = Cu € k= 4,5.6.

Strain-displacement relations can be specialized for an axi-
symmetric system which has the characteristic conditions

T5=Tp=0 and 3/98=0. (4)
This allows the displacements to be functions of r and z as
U.{rz) = radial displacement

U).{r.z) = axiai displacement (5)

U, = 0 = tangentia} displacement.

The strain-displacement relations are simplified to
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By substitution of (6) into (3), the stresses can be described
by functions of displacement

o =f{U U, 0,=f(Un U, 0=/U.UJ. (N

Substituting the stress-displacement relations into the
equilibrium equations (1) results in two partial differential
equations (PDE) as ‘
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The distributed Lorentz force density or body force, X, is a
function of r and z, and is related to the magnelic field and
current density by

X(rz)=-J,B, and X(rz)=-J B, {9)

This analysis assumes that these body forces may be
described using a power series polynomial form
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The radial body force is linear with respect 10 r and even
with respect to z; while the axial body force is quadratic
with respect to r and odd with respect to z. The body forces
used in this analysis utilized curve-fitting of this form to the
eighth order in z.

In order to arrive al a solution to the two PDE's (8), the
displacements are also assumed to be described by power
series forms with respect to z. In this study, the
disptacements were expanded to the 8th order in z as
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Substitution of these displacements (i1) and body forces
(10), with an expansion to the 8th order in 2, into the PDE's
(8) results in nine, simultaneous, sccond order, ordinary
differentia) equations. The ODE's are of the displacement
sub-functions in (11) that are functions of r. For the PDE'’s
to be satisfied for all z, each ODE is equated 1o as

(odeg) + (0dey) 2 + (odes) 2* + (0deq) 2 + (odes) 22 =0 (12)
(ode,) 7 + (0dey) 2 + (0des) Z° + (0des) 7 =0

The general form of the displacement sub-functions will be

(13}

w, = Tk ™)+ SOE oy T (2 Inee))
m m m

The analytic solution for the displacement sub-functions
gives the displacements and related strain and stress.

The nine ODE's from (12) are second order and
therefore each ODE gives two integration constants which
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make 2 total of cighteen constants. For a two layer magnet
{winding and reinforcement) there are a total of 36
constants. The integration constants within the solution will
be found by applying boundary conditions for each layer
within 2 magnet. Each mechanically independent section of
a magnet can be analyzed separately. Boundary conditions
are applied at each interface, inner and outer radii, and along
the ends of the magnet. At the free surfaces (inner radius of
winding, ry, and outer radius of reinforement, r3) there are a
total of four boundary conditions as

a r(?‘| 2)=0,

t(n.2)=0 (14)

G,(r.2)}=0, 1p{n,0=0

In order for each boundary condition to be satisfied for al] z,
cach coefficient of z must be equated 1o zero, therefore each
boundary condition gives four equations.

Al the interface between winding and reinforcement, ry,
there are also a total of four continvity conditions as
o432 =0 B(ry,2) (15)
M =1E0.0
U:l(fz.z) = U,‘g(rg.z)
vin.2) = Ufn.2

Again cach boundary condition gives four equations except
for continuity of axial displacement, U,, which gives three
equations.

Five additional boundary conditions are needed 10 obtain
the 36 required. These five arc applied at the end of the coil
where there is another free surface. Al this end the axial and
shear stresses are zero. However, there are not enough
integration constanlts 1o salisfy these conditions completely.
Therefore relaxed boundary conditions are applied which
equale the inlegrated axial and shear stress o zero,
physically setting the axial and shear forces 1o zero.

(16)

The final three conditions applied at the coil end prescribe
the axial stress for the winding at the interface and for the
reinforcement at the interface and outer radius 16 zero as

G?(Q.§)=O (17
0f(n.3)=0
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IIl. CompaRATIVE CALCULATIONS

A stress analysis was performed for a 7 T example
magnel using the present power series analysis and also
using a finite element method. The parameters of the 7 T
solenoid with external reinforcement are given in Table 1.

TABLE ]
PARAMETERS FOR 7 T MAGNET WITH EXTERNAL REINFORCEMENT
Layer n fo 1 L
(mm) (mm) {mm) (mun)
conductor (NbTi) 100.00 136.53  36.53 500
reinforcement (sicel) 136.53 141.53 5.00 500

The material properties of the windings and reinforcement
used in the analysis are given in Table 2. The average
current density is 169 A/mm?.

TABLE 2
MATERIAL PROPERTIES FOR WINDINGS AND REINFORCEMENT

conductor (NbTH) reinforcerment (sicel)
E, (GPa) 455 188.9
E, (GPa) g1.5 196.5
E, (Gpa) 49.4 188.9
G (GPa) 2.5 68.1.
vy 0.341 0.300
Vo 0319 0.300
Ve 0.182 0.288

The body force field distributions were oblained by
compuling the field throughout the windings. Fig. 2 and 3
show the axial and radial body force fields respectively.
These body force field distributions were curve it using the
polynomial expansions described in (10) for expansions
through the 8th order in z.
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Fig. 3. Radial body force distribution.
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Fig. 4. 3-D Shear stress distribution.
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Fig. 6. Comparison of axial stresses.

Fig. 4 gives a 3-D view of the shear stress distribution in
order to exhibit the capability of the power series solution o
follow ‘sharp' curves near the end of the magnet. Fig. 5
through & show stress distribution comparisons against finite
element method for tangential, axial, radial, and shear
stresses.  The stress distribution is given as a function of
radius throughout the windings and reinforcement, at the
mid-plane and at 0.5 and 0.8 of the half-length of the
magnet.

IV. CONCLUSION

An analytical solution to the distribution of stress and
strain throughout a solenoid magnet, including the shear
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Fig. 7. Comparison of radial stresses,
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Fig. 8. Comparison of shear stresses.

stress components, has been derived. The solution is based
on power series expansions of both the distributed Lorentz
body force and the displacements. The analytical solutions
were compared with finite element solutions. In order to
achieve the degree of correspondence which is shown in the
figures, it was found necessary to work with displacement
expansions to the 8th order in z. The finite element
technique is always available for the detailed analysis of
individual magnet designs. An anaiylicai' technique such as
the subject solution, however, can be conventiently
formulated as a part of more general computer codes and
used in a powerful manner in the search for designs which
optimize a number of criteria, including limitations on the
various components of the stress.
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