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Abstract—The concepts of plasticity are reviewed in the
context of solenoid magnet design, The von Mises and Hill yield
functions are introduced and related fo flow rules. The
derivation of equations for an elastic-plastic analysis of solenoids
is discussed. Material properties are derived from NbiSn
conductors and used in example caleulations, The results of
clastic-plastic analyses are compared with those of elastic
analyses under various assumptions.

1. INTRODUCTION

The stress-strain  curve for NbTi composite
superconductor, although displaying some unique aspects, is
typical of a linearly elastic, ductile material , This is not the
case for superconductors which are formed by a high
temperature heat treatment, such as the A-15 compounds and
the ceramic superconductors, The stabilizer in these latter
superconductors is annealed during the heat treatment. As a
result, these composite superconductors exhibit non-linear
stress-strain curves at relatively low values of applied stress.
The stress analysis of a magnet depends on the mechanical
properties of the conductor. For those conductors having a
stress-strain curve which exhibits plastic characteristics, a
itress analysis based on plasticity theory would appear to be
most appropriate. Initial results of the application of
plasticity theory to the stress analysis of a superconducting
solenoid are presented here. The relevant characteristics of a
non-linear stress-strain curve are reviewed. Typical stress-
strain curves for Nb3Sn conductors are surveyed. The
formalism of plasticity theory is presented in the context of
solenoid magnet design. Equations have been derived which
give the stress and strain in solenoid coils for various yield
criteria [1], {2]. The formulation of equations for the yield
criteria of von Mises and Hill is summarized here. The
equations are applied to example coils and the results of the
clastic-plastic analysis are compared to the results of a linear
clastic analysis.

II. STRESS-STRAIN CURVE

An idealization of a typical stress-strain curve obtained for
a ductile material is shown in Fig. 1. The plot of applied
stress versus total strain usually has an initial linear region in
which the material is elastic and the strain is reversible as a
function of applied stress. The slope of the initial lincar
region, from the origin to point @ in the figure, is the Young's
modulus E for the material. For emphasis and clarity, the
modulus will be referred to here as the initial modulus. As
the stress is increased past the point a, the stress-strain curve
ccases (o be linear, the material begins to yield, and the strain
state 1s no longer reversible as a function of applied stress.
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Typical, ideal, behavior is shown in Fig. 1 with the return of
the strain {rom point & to point ¢ with removal of the applied
load. The offset strain to point ¢, also refereed 10 as the non-
recoverable strain, is the plastic component of strain. The
strain between points ¢ and & is the recoverable, or elastic,
strain component. In practical applications, the yield stress
for a material is usually defined in terms of that stress which
corresponds to a given value of plastic strain, such as 0.2%
off-set yield. In the terminology used in this paper, the yield
point will refer to point a.
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Fig. 1 Stress-strain curve for ductiie material

At a point beyond yield, such as point b, the totat strain is
the sum of an elastic strain component and a plastic strain
component, as shown in Fig. 1. In the stress-strain curve of
an actual material, the behavior between points b and ¢
exhibits some hysteresis. For applied stress beyond point b,
the material will quickly resume the same stress-strain curve
independent of the unloading cycle.

A further valuable concept is that of the secant modulus
Eg, which is the slope of the line joining points ¢ and b. The
sccant modulus is an effective modulus for an cquivalent
linearly elastic material which would cxhibit the loading
state b.

Stress-strain curves obtained at 4.2 K for a varicty of
Nb3Sn superconductors are given in Fig. 2. The conductors
are identified in Table 1. The extent to which a stress-strain
curve is considercd non-linear can depend on the portion of
the curve which is of interest for a particular application. The
critical current densily of NbySn is strain sensitive, with a
maximum current density typically in the neighborhood of
0.25% for longitudinal strain {3]. For a strain of this value,
reference to Fig. 2 indicates that the total strain will include a
significant fraction of plastic strain. This fact motivates the
interest in examining the results of a stress theory which
incorporates the plastic characteristics of the conductor.
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Fig. 2 Typical stress-strain curves for Nb3Sn conductors,
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Fig. 3 Lincarized conductor and effective stress-strain curve.

Although the strain dependence of the Nb;Sn
superconductor is well known, it is cmphasized that the
critical current density versus strain is measured during the
initial loading of the conductor. The strain corresponds to the
total strain measured from the origin in Fig. 1. The
associated stress-strain curve is therefore the curve oab in
Fig. 1, as opposed to curve ¢b for subsequent load cycles. It
is noted that if the state of stress and strain along curve oab,
for example at point b, were (o be interpreted in a linear
elastic model, the ratio of stress to strain is the secant
modulus Eg and not the initial modulus.

TABLE |
NbzSn CONDUCTORS

Type Reference
Bronze Process 4
MJR 5
Internal Tin 6
Tubular Tin 7

Conductor
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In order to simplify the analysis, a piccewise linear stress-
strain curve, shown in Fig. 3, is used to approximate the
characteristics of the conductor. The objective here is not 1o
model a particular Nb4Sn conductor, but rather to examine
the implications of plasticity. The initial modulus E; and
secondary medulus Ea of the conductor, given in Table 2, are
average values based on the curves of Fig. 2. The average

properties of the windings, the tangential component of
which is listed in Table 2, are computed from the conductor
properties by the methods of composite materials. The secant
moduli Eg shown in Fig. 3 are related to the examples.

HI. FORMULATION GF EQUATIONS

The theory of plasticity is formulated in terms of flow
rules which give the increments of plastic strain in terms of
applicd stress. The clastic strain component of the total strain
is related to the state of stress by the gencralized Hooke's law,
The state of elastic strain is determined by the state of stress.
The state of plastic strain is, in general, determined by the
history of the applied stress. It is therefore appropriate to
have a formulation of plasticity in terms of the increments of
plastic strain.

In the treatment of plasticity, it is useful to decompose the
total stress tensor into a spherical stress tensor and a stress
deviator tensor. The spherical stress component, which is
associated with a uniform hydrostatic pressure, is generally
considered to have no effect on yielding and plastic flow. Tt
is the stress deviator tensor which is used as the fundamental
quantity in plasticity,

The flow rule is a description of the yielding process in
the material, and as such is dependent on the yield criterion or
yield function for the material. The form of the yield
functien is reflected in the form of the flow rule. The flow
rules associated with the yield functions of von Mises and
Hill are introduced. The nature of the solution to the
plasticity equations is described for different cases.

A. von Mises

For the well known von Mises yield criterion, the flow
rule has the form given by the Prand(l-Reuss equation

. 3de’
dElu.:__
2o

£

S, M

which relates the increments of plastic strain dePj; to the
components of the stress deviator tensor Sij. The effective
stress O, has the form of the von Mises yield function, which
in the principle axis of the magnet coordinates is

+(0':—o,)2+(0',-cre)2]. (2)

When 1he cffective stress cxceeds the yield stress, the
material begins to deform plastically. Above the yicld stress,
the components of stress continue to be related to the
cffective stress by Eq. (2). The effective stress provides the
connection to the uniaxial tensile test, for which the effective
stress reduces to the appliced stress. A functional form similar
to Eq. (2) exists for an effective plastic strain increment def in
terms of the increments of the components of plastic strain.
The effective plastic strain reduces to the plastic strain in the
uniaxial tensile test. The stress-strain curve therefore
provides the relationship between the generalized concepts of
cffective stress and effective plastic strain.



For a plane strain condition, it is found that the
components of the stress deviator tensor are proportional to
the effective stress. The Prandtl-Reuss equations are
integrated directly into an algebraic equation in the strains

only. It then is possible to derive a linear differential
equation for the tangential component of plastic strain
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The coefficients C depend on the material properties, the
current density, the windings, and the magnetic field strength.
The equation may be solved in closed form, and the
expressions for the stress in the plastic region of the stress-
strain curve follow directly.

For a plane stress assumption with the von Mises yield
function, the derivation leads to non-linear differential
equations. The numerical solution which is obtained is a
special case of the more general Hill yield function.

8. Hill

The more general formulation of plasticity is based of a
flow rule of the form

a1 X%
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(5)

~ where the increments of plastic strain are related through the
scalar differential to dA to the derivatives of the yield
function, A specific form of the flow rule is obtained by
substituting a given yield function jnto {5).
For an orthotropic material, the von Mises yield function
is generalized to Hill's function which, in the principle
magnet coordinates is written

Zf((}',-jj:F(08~U,)3+G(Gr—0':)2+h'(0':—0'9)2 (6)

where F, G and H are related 1o the tensile yield stresses in
the principal directions.  An cpoxy impregnated magnet
winding is nearly transversely isotropic, and this assumption
is made in the following. For a transverse isotropic material,
the Hill function reduces to
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where at yield, the effective stress 6, is equal to the
tangential yield stress. The parameter 1 is a measure of the
anisotropy and may be written in terms of the yield stress as
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A magncet is an example of proportional loading. ir which
all the components of stress, and therefore the  effective

stress, increase at a rate proportional to their final values. In
the case of proportional loading, the differential form of the
flow rule may be integrated directly to give an algebraic
equation for the plastic strain components. Here, as opposed
to the von Mises case for planc strain, these equations contain
the components of the stress. It is possible, by using Hooke's
law, the force balance equation, the constitutive equation, and
the Hill yield function, to eliminate the strains to arrive at two
coupled non-linear first order differential equations for the
components of the stress.

do
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These differential equations are solved using numerical
methods.

IV. EXAMPLE CALCULATIONS AND RESULTS

The elastic-plastic analysis is applied to two example
coils, The parameters of the coils are shown in Table 2
where By and Bj are the axial field at a; and a;. While the
coils occupy the same radial depth and produce the same
field, the second coil has as external reinforcement section
and a proportionally higher current density. The tangential
components of the elastic moduli used in the calculations are
given in Table 3 where the values for the conductor are
obtained from Fig. 3

Calculations are first made assuming isotropic yield
conditions and using the von Mises and also the Tresca yield
functions. These calculations are compared with the results
of elasticity theory using both the initial modulus and a
selected secant modulus. The implications of anisotropic
yield are then examined with the Hill function.

TABLE 2
PARAMETERS FOR EXAMPLE COIL
aj 02 33 B 1 B 1 J
Coil  (mm) (mm} (mm) {Tcsla) (Tesla) (A/mmz)
| 130 158 —_— 12.5 8.0 125
2 130 152 158 12,5 8.0 159
TABLE 3

TANGENTIAL COMPONENTS OF THE ELASTIC MODULUS FOR
CONDUCTOR AND COIL

Eg. Eg > Eq 51 Eq 52

_ (GPa) (GPa) (GPa) (GPa)
Conductor 100.0 36.0 588 49.5
Coil 813 333 50.4 434

For the first example coil, without reinforcement, the
tangental stress is seen in Fig. 4 10 be independent of the
method of computation, and independent of the modulus,
The tangential strains for the plasticity models agree well
with one another in Fig. 5. The tangential strain predicied by
an elastic calculation using the initial modulus is significantly
and deceptively lower. When the computed stress, however,



is used to select the secant modulus, Eg|, from the stress-
strain curve in Fig. 3, the elastic calculation using this secant
modulus is seen in Fig. 5 to agree well with the elastic-plastic
results.

25071
g
260 ‘—L—k;‘___._—_l.....;_‘__‘_._.
= -_H-w—'h.‘—.—-'ﬁ.ilrlf.
(=9
EISO
ﬁ — — Tresca
= 1007 Von-Mises!
v - Secant
sol 4 Initial
o— ; . N . . : : ; .
0 06 02 03 04 05 06 07 08 09 1
Radius
Fig. 4 Tangential Stress without Reinforcement
05 -
-‘-—-1:,.-;.___;-‘—
0.45 Hq""“-.._;
0.4 :ﬁlﬁ.!—,—-!_—:'ﬁl_-?_l:.lhl
0.35 -
® 037
=
wOS Y e e wu L,
= A A aa g, i
v 0.2 ——— A 4
0,15t i:—f Tresca !
! [ Von-Miseq
017 " Secant |
0.05 x Initjal i
0.0 * ‘ ' ; -

0 01 02 03 04 05 06 07
Radius

08 09 1

Fig. 5 Tangential Strain without Reinforcement

A similar situation exists for a coil with external
reinforcement. As seen in Fig. 6, the elastic-plastic results
agree for the Tresca and von Mises yield functions, and an
elastic calcujation based on the initial modulus gives lower
values of strain. The average value of strain for the elastic-
plastic result allows selection of a secant madulus Egy, from
Fig. 3. The elastic calculation based on this secant modulus
agrees well with the elastic-plastic result.
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Fig. 6 Tangential Strain with Reinforcement

The implications of an anisotropic yield stress are shown
in Fig. 7, where the Hill yield function is used with a range of

values for the ratio of yield stress in the tangential to the
radial direction. For the same value of tangential yield stress,
the values of tangential strain depend on the yield stress ratio
as shown in the figure.
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Fig. 7 Tangential strain distribution for various tangential to radial yield
Stress ratios Gy gfoy;.

V. CONCLUSION

It has been shown that elastic-plastic equations for the
analysis of stress in solenoid magnets can be derived for a
number of yield functions including, most importantly , Hill’s
function. The initial application of these equations has
emphasized the simple but important fact that the stress-strain
curve of NbySn is sufficiently non-linear that an elastic
calculation based on the initial modulus will be significantly
in error. Il is interesting to see the agreement between elastic
calculations based on a self-consistent secant modulus and
the elastic-plastic calculations, at least for the tangential
values reported here. The potential for elastic-plastic theory
to contain new and important information for magnet stress
analysis is indicated by the results obtained for anisotropic
vield stress. The winding composite is a complex,
intrinsically elastic-plastic composite which simultancously
has components in the plastic and elastic state. Knowledge of
the elastic-plastic material properties of the composite is
required as input for further analysis,
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