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Three-Dimensional Axisymmetric
Stress Analysis of
Superconducting Magnets Using
Green’s Function Solution

A closed-form Green's function solution for the axisymmetric stresses in an elastic coil of
superconducting magnels is presented, which provides the components of stress through-
- out the coil and includes the shear stress in addition to the normal stresses. The Green's
function method permits the development of a solution irrespective of the type of magnetic

body forces within the coil. Green's functions are derived by using finite Hankel trans-
forms appropriate for a cylindrical coil. [DOI: 10.1115/1.1345700]

1 Introduction

The prediction of stress and strain is essential for both mechani-
cal and electrical design of high-field solenoid magnets. These
magnets are designed in a variety of configurations. A supercon-
ducting magnet is one example of such magnets, which can be
treated as a combination of several solenoid coils, where each coil
may be reinforced by a nonconducting layer. Depending upon the
geometrical specifications of a coil, magnetic fields may behave
differently. These fields result in magnetic body forces, and thus
stresses. Traditionally only the tangential component of the stress
at the plane perpendicular to the middle section of the lengitudinal
axis of a coil (midplane) has been considered for design and fail-
ure analysis. The value of shear stress has been determined to be
small in the midplane but it becomes larger toward the ends of the
coil. In the analytical solutions available in the literature, the
stress analysis has been performed for just the midplane and shear
stress is assumed to be negligible ([1-4]). As a result, a three-
dimensional closed-form solution is desired to understand the dis-
tribution of stresses (including shear) throughout a solenoid coil.
In the present work, a general closed-form solution, using the
Green’s function method, is derived for an elastic, isotropic coil of
a high-field solencid magnet. This solution is applied to the im-
portant case of a -superconducting magnet. This analysis is not
limited to the midplane and can be used for any type of solenoid
magnet.

The use of a Green’s function solution is not limited to mag-
netic body forces. It can be applied to other axisymmetric elastic-
ity problems for finite bodies. The Green’s function solution can
be used for inclusion problem in composite materials where
eigenstrains may be considered as body forces ([5,6]). The
Green’s function solution can also be applied to specific problems
in fracture mechanics and composite materials ({7-9]). Fictitious
body forces can be introduced in composite materials, where the
difference between the thermal expansion coefficients of the fiber
and the matrix results in residual stresses.

A limited number of publications on the approximation of the
three-dimensional problem are available in the literature. Some
solutions are obtained by neglecting shear throughout the coil
({10]). Other solutions are based upon numerical techniques ([11])
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or power series expansion of the fields and displacements ([12]).
The direct analytical solutions for infinite or semi-infinite domains
are not appropriate for a finite domain such as a magnet {[13,14]).

2 Fundamental Equations for the Stress Functions

Consider an elastic isotropic ¢oil with inside radius of &, out-
side radius of b, and length of 2L as shown in Fig. 1. Using the
equilibrium equations, constitutive equations, and strain-
displacement relationships, the governing equations for displace-
ment vector u(r,z), for an axisymmetric distribution of body
forces X(r,z), may be written as

(A p)V(V.u)+ o Vie+X=0 )

where V2 is the three-dimensional Laplacian and X and u are
(Lamé’s) elastic coefficients ([15]).

From the Helmholtz theorem, any vector satisfying Eq. (1) may
be resolved into a sum of a gradient and a curl

0=V¢+VXA 2

where &(r,z) is a scalar potential and A(r,z) is a vector potential
such that V.A=0. Incorporating the displacement vector from Eq.
{2) into Eq. (1) yields an equation in terms of potential functions
¢ and A.

(A+20)9(V20)+ uYX(V2A)+X=0. ®
The independent potential functions ¢ and A may be written as
A=aVX¥ ¢=pv.¥ @

where « and 8 are arbitrary constants, and compdnents of the
vector W are the stress functions. Introducing Eq. (4) into Eq. (3}
leads to a partial differential equation for vector V.

BON+2u) VAW +[B(A+2 )+ pa] VX[V X (V) ]+ X=0
3)
In order to simplify Eq. (5). we may choose the arbitrary constants
a and B as —1/u and 1 N+2u), respectively. Thus, Eq. (3)
reduces to the component form.

V2 1 Z\P 4 ¥, 4

I BT

v? 1 Z‘P 4 3, 4 v 1)5«1},

A Y EGE TR TR
VAP _+X.=0 (6)

Because the geometry and loading are axisymmetric, the partial
derivative with respect to tangential direction is zero, 6/88=0.

Ay
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Fig. 1 Schematic diagram representing one coil of a magnet

Hengce, the three partial differential equations in Eq. {6) reduce to
three uncoupled partial differential equations for radial, tangential,
and axial stress functions:

1 2
(Vz— ;—2-) ¥, +X,=0 )

1 2
(vz-ﬁ) W+ X=0 )
V4P, +X,=0. )

The body force in a magnet is the Loreniz force, a function of

r and 7 related to the magnetic field, B, and cusrent density. J, by
X=JXB. (10)

For an axisymmetric diswribution of Lorentz force, J=J g4 and
B=B,e,+B,e,. Thus, the vector product of the J and B leads to
Xr=JﬂBz X6'=0 Xz= —JGBr' (]1)

In the absence of a tangential magnetic body force in Eq. (8), the
tangential stress function will be zero, resulting in a zero tangen-
tial displacement u,.

3 Finite Hankel Transform

The partial differential equations represented by Egs. (7} and
{9) may be solved by using finite Hankel transforms {[16]). The
finite Hankel transform of order n of function f(r) on a closed
finite interval [g, ] is defined by

b
mn[f(r)]=}:(£l)=f rf(r)Kn(gavr)dr (12)
where {; is a root of the transécndental equation
J{La)Y ({b) =T (Eib)Y (Lia)=0 (13)
and K,(¢;,r) is the Fourier Bessel kemel.
Ko D) =l Y (D) = Tn(£:b) Y o(4ir)] (14)
The inverse transform for the finite Hankel transform is
. Gr(La)
=m-1! = — 8 . .
=R V= 2 rgay= gy GOKldion)-
(15)

where the summation is extended over all positive roots ;. The
finite Hankel transform of a Laplacian of f(r) (in cylindrical co-
ordinate) is given by
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) n? _ a2 1d n®

e (V ':f)f =% (Er—z’“?a—r" Ff)f
Jo(£ib)
Jel{ia)

f(a)) - ZLA).
(16)

_2(
=~ so)-

4 Radial Green’s Function

The Radial Green's function for ¥, , radial stress function, is
obtained by solving Eq. (7) with Dirichlet homogeneous boundary
conditions. Applying the finite Hankel transform (of order one) to
each term of Eq. (7) yields

1 2
ml[(vz_ ;i) ‘Pr]=_m1[xr]- (17)
Use of Eq. (16) in Eq. (17) results in '
d*\? -
(_ﬁf" EI] V,(0.2)=—X 5.9 (18)
where {,; is a root of the transcendental equation
T &)Y (b)) — N (§b) Y (Lia) =0 (19)
and
, .
\Fr(glivz)=J rwr(r’z)Kl(gihr)dr (20)
Xr(glhz):f rX,.(r,z)Kl({“,r)dr, (21)
where
Kl(gn'J)=[J|(§1i")Y1(§1ib)_Jt(gl.‘b}Yl({n")] (22)

is the Fourier Besse! kernel. An additional transform {in the axial
direction) is needed for solving Eq. (18). Considering the radial
body force is an even function of z and the interval is finite
[—L,L], an appropriate transform is the finite Fourier cosine
transform. By introducing the finite Fourier cosine transform (in
the axial direction) of Eq. {17),

_ ) 82 Z‘F - - _ .
3(’.’ £1i+ 3? f’(gll :Z) JC[Xr(glr ,Z)]a

the differential equation is converted into the algebraic equation

niat\? -
(—ﬁi‘ _Er) ¥, (£y.n)==X{1.n) (23)
where n is an integer. The functions
L
$(21.m)= j (41 ho0s ——dz @4)
-L
= L_ nmz
Xr(éu,n)=J X ({y.z)eos——dz 25
: -L

are the finite Fourier cosine transforms of ¥ ,({,;,z) and
X,({1;>2). The inverse finite Fourier cosine transform of
W¥,(Z,;,n) and inverse finite Hankel transform of ¥,(¢;,z) are
defined by

\Fr(gli»z)=351[‘ir(§livn)] ‘

1 1 < Rz
=57 Y00+ 7 2 Fldumicos—— (26)
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T, (r,2)=R] '[P ,(£1;.2)]

=ﬁ§ 204 Ly8)

2&: J?(L.-a)—.f%(;.;b)q”(‘:““’-)Kl(f“”)-

27)

Substitution of Eqs. (26) and (27) into Eq. (23) vields an equation
for the radial stress function:

J

L &
o

2
T
T2

¥ (rz)=—

Lb

By interchanging integrals with summations, we may write Eq.
(29) in the form

L [k
‘I’,(r,z)—--J’ J‘ X(r',2" )G (r,r',z,2")dr'dz (B0
-LJa

where

G r,r'.z,z')= —2 5

I La) .
T (L)~ I 1b)

XK\ (£1i.0)K (L")

1

i=1

nwz' nwz
cos ——

L L

X cos

+L?
21.;1, 2 (L8 A nta)? +n2‘n'2)2
is the radial Green’s function.

} (31D
§ Axial Green’s Function

The axial Green’s function is obtained by solving the partial
differential equation for the axial stress function, Eq. (9), with
Dirichlet homogeneous boundary conditions. Here, finite Hankel
transform in the radial direction and finite Fourier sine transform
in the axial direction {since the axial body force is an odd furction
of z) are used.

Applying the finite Hankel transform of order zero in r, and
finite Fourier since transform in z, to Eq. (9) yields

1z - .
( ~ 5= ffz-) ¥ (loim==Xldoim) (32
where n is an integer, {o; satisfies
Jo(Loia)Y ol Loib) —Jo(Loib) Y ol {0ia) =0 (33)
|
2 2

w

zs

ﬁr}?(é’liﬂ)

Vlra== 52 mr - A | 7ig, réw0)
z—ngﬂ_)-X({“,n}cos 7| Kitduin).
(28)

Introducing Eqgs. (21) and {25} into Eq. (28) gives the solution of
the radial stress function ¥ {r,z) in terms of the radial body force
X(rz).

1 .
m—r "XAr' 2 YK (L. )dr'dz!
=yl [Jr d hel
1 st 2

7z’ | GJiLue)
e =T Tithie)
(29)
|
and
G (Loi )= Ro[3L ¥ (r,2)]]
L b
nws
=J j r‘l'z(r,z)Ko(gm,r)sin—L——-dra'z (34)
—La
X (Zos 1) =Rg[ 3 X.(r,2)]])
L b
nmwZ
=fJer(r,z)KU(g’o,-,r)sianrdz (35)
—La

are transforms of the axial stress function and axial body force.
Here,

Ko(Loi»r) =1 o(Loir) Yol Loib) = Jo( Lot} Yol o)) (36)
is the Fourier Bessel kernel for the zero-order transformation. The
inverse transform of ¥ ,({o;.n) is

V. (r, ) =R (37 (¥ Lo )]

ggljg( gﬂla)
0( gOra) JO( g{)rb)

7 ® o

TR

i=]

Xsm ‘P‘ o Loi - nIKo{ Lo o 7)-

Incorporating Eqgs. (32) and (35) into Eq. (37) gives the solution to
the axial stress function ¥, (r,2) in terms of the axial body force

(37

i=] n=1

[ > L’
Gz(r’r ,Z,Z')=_T2 2 [(LZ
is the axial Green's function.

Journal of Applied Mechanics

Lot ntart)y Jo(Loia) = To(Loib)

XAr.2).
L (b
\I’z(?’,Z)=J' JXz(r'.z')Gz(r.r',z,z')ﬂ'r'dz' (38)
-rLtJa
where
JAduia AT T
L8 T4 (Lom) r Ko Loi .+ YKol Lo: 7)sin I SinT (39
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6 Boundary Conditions
The displacement vector is related to the vector W by Eq. (40).

1
u=—EVX(V><1F)+ V(V.4) (40)

1
A+2u
The stress tersor in terms of the displacement vector is defined by

o=MV.0)I+ u[Vu+VTu] (41)

where I is the identity tensor. Substituting Eq. (40) into Eq. (41)
results in stresses in terms of axial and radial stress functions

—207V21‘174!-1 Vi il
IS Gy P —v” )¢

2f_, 1 1 , 14
=7 V—;'f ‘1’,-&-1—_; vWe———ig

r or

1 &
o= 2—(v2\r )+—(vv2 — Jqo

=2 vewe a(v2 1)\? L2 4
Tr:= ar( ) 9z T Ty éraz (42)
where v is the Poisson’s ratio and
14
QD— - (r‘lrr) (43)

is the divergence of the vector W.

Traction-free boundary conditions are appropriate for a sole-
noid coil. Therefore, the radial and shear stresses should be zero at
the inside and outside radii (r=a and r=5), and the axial and
shear stresses should be zero at the ends of the coil (z==*L).

Substituting the solutions for radial and axial stress functions
from Eqgs. (30) {31), (38), and (39) intc Eq. (42) and computing
radial and shear stresses at the inside and outside radii, and the
axial and shear stresses at the ends of the coil, yields

= nmz
crr(a,z)=20 1 (n)cos—— (44)
- nwz
o‘,,z(a,z) = 2 pZ(”)Sin—_
r=1 L
- nwz
o’,(b,z)=zo m(n)cosT

‘ - nmz
Gr:(ba2)= E ,594(?1)Si11—L'—‘
n=1

U;(r,iL)=Zl Los{ Lo Ko(Loir) +#6(£1KE(£1:.7)]

a,(r,xL)=0
where

K(T({u,")=[J0(§1fr)Y1(§ifb)"-]1(glib)yo(fnf)]

1 1 ¢
=;§;K1(Cnar)+z_;K1(§n,r), (45)
and g,(n) through p4(n). ¢s(Ly) and ge(L,;) are given by
o 2 nr Jol {oib)
() 2 o e ["r:@onn)—i‘“m‘*arrqu,")

X

(46)

Jl(fofb)]

s 2-v)+ (1 — ]
T_i_( v+ {74 v) J;({o,-a)
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= ) 1 2,2
#2(n) 2'1;_ __V["rz(lonﬂ){v%
J b
~dal1- ”)] 13((5;’,-@) }
=2 nw
3(n) 2‘—1)"' _rz(gonﬂ)—j__

n
+br,(:1,.n){—a—(z v)+ 1~ )”

o

1 2 nz,n.z
palm=2 1= vwbl =<€o~n>[ zo,(l—v)ﬂ
S (=1 22
Ws(€0i)=';) I—-7 {-rz(foun)%{—%(l_l’)

+4042- v)“

® -1y 2,2
PIAED) %[r,(cl.»,n)fu[fzf—(i—v)—vs"i”
n=0

with
172 L3 gﬂz‘, (gﬂea)
r:“""‘")‘_T[(L’;O e P P
J’ J‘ r'X(r 2" Ky r )sm d’r dz’ }
47

r - _“f GJHe) I
r(glivn)_ 2 J?({l.a)_,]%(é'hb) (L2£%f+n2172)2

drd}

J J r X (r' 2 YK (s Joos

""'_2 JALa) 1
2 Jiitua) =T Lub) 2LE%

FA(L0=-

L &
XJ‘ J’ r'X,.(r’,z’)Kl(gl,-,r’)dr'dzf.

From Eq. (44), it can be observed that except for the shear
stress at the ends of the coil, boundary conditions are not satisfied.
The radial and shear siresses impose forcing functions of z at the
radial boundaries and the axial stress asserts a forcing function of
r at the axial boundaries. Thus, a complementary solution for
either radial or axial stress function (since stresses are related to
both) is needed to neutralize these forcing functions.

7 Complementary Solution for the Axial Stress Func-
tion

Let us consider function £(r,z) {an odd function in z) as a
complementary function for the axial stress function. From Eq.

(9), £(r,z) must satisfy the homogeneous part of the partial dif-
ferential equation for the axial stress function.

V4(r,z)=0 (48)

From Eq. (42) radial, axial, and shear stresses are expressed in
terms of &(r,z).

1 4 &
o,= ( pVi- —) £(r.2) (49)

1-v oz
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2
[(2 v)Vi- ]E(r,z)

i
L

o

pe
(l — ) Vi- 2}f(r,z)

The complementary function must reverse the effect of the im-
posed forcing functions by stresses at the boundaries. As a result,
from Egs. (44) and (49) boundary conditions for £(»,z) are ob-
tained and given by

1

2 pl(n)cosT

3 &
(vV'— —-—)f(r z)

1—v gz —a
(50)
2 = hTz
5 “-nvi- Dlern ,=a=-n2=1 pa(n)sin——
d & = nwz
=7 72 (sz W jf(r,z) r=b= -’; p3(n)cos——

1

ad , &* - . nmz
m;[(l—vw —'EZ-J&"’Z) ——; m(n)smT

r=»5
2

132 -
| IV

&(r.2)

z=L

=—§ [95(Lo) Kol Loi 1)+ 06(L10KE(E1i 7))

=0.
z=L

1 9 , &
=55 ((1—V)V _}§(r,Z)

The partial differential equation for £(r,z) with the given bound-
ary conditions may be solved by using the superposition principle.
The substitution of &(r,z)}=¢£,(r,2) + £ (7,2) into Eq. (48) yields
two partial differential equations for £,(r,z) and £,(r,2).

V4§[(.T,Z)=0
Vi(r.2)=0 (52)

Solution to £,(r,z) is achieved by applying the finite Hankel
transform of order zero to Eq. (51) and solving the resulting dif-
ferential equation for z, .

(51)

- L3 Loa)
d 2 -——-‘—n—-—-———-—-—-—-—
G(ra)=m' 2 S

+ Bz cosh({p;2) 1K o{ Lo; -7) (53)

Here, A; and B, are arbitrary constants. Solution to &(r,z) is
obtained by employing the finite Fourier sine transform to Eq.
(52) and solving the ensuing differential equation for r.

IAIIHT
PR A

[A; sinh(Z,z)

x

1
&(ra)=5-23

n=1

+21'rc](mr 27TJ'DK
L S\ T Pk

(54)

In Eq. (54), A,, B,. €., and D, are arbitrary constants,
Io[{nmiL)r] and I;{(nw/L)r] are the modified Bessel functions
of the first kind, and Ko[(n#/L}r] and K,[(n#®/L)r] are the
modified Bessel functions of the second kind. The superposition
of Egs. (53) and (54) furnishes the solution to &(r,z).
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fo:-]o(go. )
&r.z)= 17221 m[A i sinh{ £o;z)

1 - 1, nw
+BiZCOSh(§oiZ)]K0(§oiJ)"‘2_2 [‘Anﬂl(_"")
=110

L
IBKMT +21'r,1n1'r
oKt Calol oy

N 2a b ( nm \|  nwz

—L— rfio I r smT
The six arbitrary constants in Eq. (55) may be evaluated by using
the six boundary conditions given by Eq. {50). Applying the shear
stress boundary condition at z=L yields

(55)

Bi=w(Lp)A; (56)
where w({y;) is expressed by Eq. (57).
_ = &0

Y40 = 2T Lo coh( LoL) (57)

Employing the radial boundary conditions to £&(r,z) and using Eq.
(57) results in

Kn(n)A,+ K pa(n) B+ X 13(n)C + K 4n)D,

+§ Ai(Lo;m)A=p4(n)

(58)
Xn(n)A,+ Kp(n)B,+ Xy3(n) C ot K3u(n) D,
+ 2 Ax(Loin)A=paln) (59)
Ka1(m)A,+ Xsa(n) B+ Ka3(n) €+ X3(m)D,,
+§:“1 Aa(Loi A =paln) (60)
KafmA, + Xya(n) B, + Xi3(n) €, + Xas(m)D,,
+§1 Ay(Zoin)A;=ga(n) (61

where X, (n) through X (n) and A,({y;.n) through A,(Ly; .n)
are given in Appendix A. The boundary condition for axial stress
at z=L provides

As(fo:')Ai"'Zi [Ks:(Loi A+ Xyl Lo ) B+ X5y Loi )

+ Ksq(Loi )0 )=Ts(£0: . L1;) (62}

where Xs5\({o;.n) through Xsi({o;.n), As({e) and Ts(Zg;.¢0)
are given in Appendix B.

Equanons (58) (62) represent a system of equations where the
unknowns are A,, B,, €,, D, and A;. To evaluate these un-
knowns, the infinite sen'es in Eqs (38)— (62} are replaced by finite
summations with an acceptable truncation error. Hence, the infi-
nite upper limits for i and n are changed to finite values of M and
N, respectively. Expanding these finite summations would result
in a system of equations with 4N+ M unknowns and equations,
where unknowns are A,—Ay, 8,8y, €,-Cy, D~ Dy and
A=Ay . Equation (62} gives M equations by letting i vary from
1 to M. Moreover, allowmg n to advance from 1 to N in Egs.
{58)—(61), results in 4N equations. By solving this system of
equations, the arbitrary constants for the complementary solution
of the axial stress function are obtained. The combination of the

JANUARY 2001, Vol. 68 / 15



complementary and the Green’s function solutions for the axial
stress function yields a solution that satisfies both the boundary
conditions and the axial body force. This solution together with
the radial Green’s function determines the distribution of stresses
in a given coil.

8 Numerical Results

The Green's function solution is applied to a 23 Tesla super-
conducting coil. The parameters for this coil are given in Table 1.
Figures 2 and 3 show the tangential and radial stresses through the
coil along the radius at three different axial positions (z=0, z
=L/2 and z=L). Figure 4 shows the characteristics of the axial
stress through the coil along the radius at the midplane and :z
= L/2; and Fig. 5 shows the shear stress at z=L/2. Note that due
to traction free boundary conditions, axial and shear stresses are
zero at z=L and shear stress is zero at the midplane (z=0) be-
cause of symmetry.

Table 1 Parameters for the 23 T superconducting coil

Name Symbol Value Unit
Inner radius a 100.00 mm
Outer radius b 136.50 mm
Half length L 28.00 mm
Elastic modulus E 111.00 GPa
Poisson’s ratio v 0.30

Current density J 530.10 Afmm?

800+

700

600+
2

s

&

Z 5004

g =12
400
300

I=
200 4=
100 110 120 130 140
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Fig. 2 Distribution of the tangential stress for a 23 Tesla su-
perconducting coil

0

103
154

z=L
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z=0

45 T T
100 110 120 130
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™
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Fig. 3 Distribution of the radial stress for a 23 Tesla supercon-
ducting coil
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Fig. 4 Distribution of the axial stress for a 23 Tesla supercon-
ducting ceil
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z=1/2
g "
=
DE
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O A S D
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Fig.5 Distribution of the shear stress for a 23 Tesla supercon-
ducting coil

9 Conclusions

Analytical closed-form solution for the distribution of stresses
has been developed for 2 coil of high-field solenoid magnets, in-
cluding superconducting magnets. This solution is presented in
forms of the Green’s functions, which permits the development of
a solution irrespective of the type of the field or its distribution
within a coil. The problem was formulated in terms of stress func-
tions. Green’s functions were derived by using finite Hankel and
finite Fourier transforms. Boundary conditions were satisfied by
introducing a complementary solution for the axial stress function.
The radial Green’s function with the superposition of the compie-
mentary and the axial Green's function provide a comprehensive
analytical solution for the stresses.

The Green’s function solution provides a complete analytical
stress solution for an isotropic coil. This solution should be used
as a foundation for the stress analysis of multilayer magnets. The
future work should also extend this solution for an orthotropic
coil,

Appendix A

-1 Wanr [(aw nin? nw
in(n)=-———‘(1_v) (V— -2-)—1:1-10 —L—a -—T‘all(Ta)

-1 1'nm _ [nw n’m? nmw
X;z(n)=('i"_—v) (v*E)FKO(—L—a)—-EZ?,—akl Ta)

n31'r31 nw +n27r211 niw
o FERP N T

e
Transactions of the ASME

-1
5:3(n)=(1_—y){
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=gy T R T ekl T
nmT (nw 1 A'a? nw

Xy (n)=— Tzhit e (=) 20° Il 5a
nw nw 1 atx? nw

Aaln)=— ki e+ gy 2 ekel 7@

nw_ (n 1 n?s? nw
K41(n)=— LTI; Tb +(l—']}) Wblo _‘L“b

nT ni I s ni
Agln)=~— ?Kl(Tb)+(_l_—_vTWbK° Tb

7‘43(")="[

1 nw )
?—(1-,,)%(?

a1 nw
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