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Abstract

A statistical mechanics theory is formulated to capture the effect of microstructure distribution on the effective elastic moduli of a
composite material. Two point probability functions are used as a major component of the statistical theory. The statistical correlation
functions represent the morphology and the distribution (random, periodic,…) of phases. The theory can benefit from simple mathematical
representation of distribution or the shape of the second phase (circular, elliptical,…). A two-point probability function is used to approx-
imate the correlation functions for a general class of geometries with isotropic and random distributions. The simulations are also provided
and compared to other (periodic) distributions. The results show that the theory is capable of capturing the microstructural featuring in
addition to the statistical distributions.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mathematical description of heterogeneity has
received some breakthroughs in the last two decades with
the works of Kröner [1,2] and Beran [3]. More progress has
been achieved to calculate the effective properties by
making simple assumptions about the microstructure distri-
bution (random, isotropic, and periodic microstructures) or
the shape of the second phase (spherical, ellipsoidal,…).
Kröner [1,4] proposed a statistical continuum approach to
find an approximation for the elastic moduli of a heteroge-
neous random medium. These studies have relied primarily
on the one-point probability functions (number or volume
fractions of individual states within the microstructure)
which ignored shape and geometry characteristics of the
microstructure. It was realized that in order to use the
measured materials’ heterogeneity, it is necessary to incor-
porate the two and higher order probability functions.
Progress was hindered due to lack of experimental techni-
ques to obtain two- and three-point correlation functions.
These techniques are now available to measure individual
crystalline orientation in polycrystalline materials [5,6].
Extension of this effort to non-random microstructures
requires proper definition ofnth degree statistical correlation

functions. A statistical continuum mechanics approach for
an inelastically deforming composite was introduced earlier
by Garmestani et al. [7]. In the present paper, such an effort
is extended to an elastically deforming composite structure.
The present effort is different from other statistical
mechanics formulations since it includes second order
correlation functions to calculate effective properties. In
this paper, the technique is applied to a periodic and
randomly distributed microstructure.

Some of the early works in the area of elastic moduli
prediction are due to Voigt [8] and Reuss [9] which produce
the upper and lower bounds to the true effective elastic
moduli [10]. Hashin and Shrikman [11] found narrower
bounds for the effective elastic moduli based on elasticity
solutions using energy methods and by developing solutions
to the spherical and cylindrical inclusion problems. Such
efforts resulted in exact solutions for mechanical properties
of specific types of composites [12,13].

Many attempts have been made in the past few decades to
develop new formulations to improve the bounds for the
effective elastic moduli in composite materials. Methods
based on the self consistent approach have been shown to
provide better bounds for the prediction of the mechanical
behavior of heterogeneous materials. Some of the original
work in this area by Hershey [14], Kro¨ner [15] and Eshelby
[16] were performed on single crystal and polycrystalline
materials. The model is based on the assumption that the
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effective elastic moduli should be equal to the moduli
obtained by averaging the stress and strain in a spherical
or ellipsoidal grain over all orientations. Eshelby developed
a tensor that provided a mechanism to relate such efforts to
multi phase materials [16]. Eshelby’s tensor relates the
strain of an inclusion inside an infinite elastic matrix to
the strain of the same inclusion, when placed outside the
matrix free of the stresses imposed by the matrix. Such an
analogy ignores the effect of inclusions on each other. This
analysis can only be applied to dilute composites and those
that the second phase reinforcements are located far from
each other. Budiansky [17] utilized this analogy to derive
the effective elastic moduli of a composite material for
higher concentration of the second reinforcing phases. Hill
[18], Budiansky [17] and Nemat-Nasser et al. [19] provided
different solutions of the self consistent scheme. Other
efforts are due to Kneer [20], Morris [21], Mori-Tanaka
[22], and Christian and Lo [23]. Walker et al. [24,25] used
a non-dilute self consistent scheme to obtain a better and
more simplified solution for the elastic and inelastic bound.
Such efforts provide corrections to the first order bounds of
Voigt and Reuss and are classified as second order bounds.
Following the method of Hashin and Shrikman, Avellaneda
used the energy method to provide better bounds for compo-
sites materials with specific symmetries [26].

Statistical continuum theory for the effective elastic
moduli was initiated by Volkov and Klinskikh [27], Loma-
kin [28,29], Beran and Molyneux [30] and Kro¨ner [4].
Kröner [1,2,31] applied the continuum theory to calculate
the effective elastic moduli for a randomly distributed
microstructure. Torquato [32–35] extended the formulation
to include then-point correlation functions in the calcula-
tion of the effective properties of random heterogeneous
media for specific second phase shapes and microstructures.
The application to anisotropic materials was studied by
Zeller and Dederichs [36]. McCoy [37] provided a review
of the statistical modeling effort for a randomly distributed
microstructure.

The application of these theories to composite materials
provides better bound for the moduli for any distribution of
phases. Second phase interactions (fiber to fiber) are usually
ignored in other models and at best, it is assumed that they
are periodically distributed. The real microstructure devi-
ates from such an ideal condition for the fact that there may
exist a range of size distributions for the fibers and the shape
of the constituents may not be represented by exact mathe-
matical formulations. As an alternative to such approaches,
the statistical continuum theory uses probability functions to
represent such details in the microstructure. Statistical
continuum theory can only be applied to cases where a
complete statistical information is available about the
morphology and the distribution of the constituents in
composite materials. Such information is represented in
the form of correlation functions. Depending on the
complexity of the microstructure, more information in the
form of higher order correlation functions can be incorporated

in the statistical formulation for a better representation of
the material. It will be shown that in reality, good approx-
imation can be obtained by using only correlation functions
of lower orders. In this paper, a two-point correlation func-
tion is formulated using a two-point probability function in
the statistical model to calculate the elastic moduli. Correla-
tion functions have been studied in detail by Torquato [32–
34] and exact forms have been offered for different well-
known microstructures. The functional form of the two-
point probability functions used here is a general one and
is suitable for any isotropic microstructure distribution as
long as it satisfies global statistical homogeneity. The
formulation presented here can use any form of the prob-
ability function and is not limited to one form or another. As
a matter of fact one may choose not to use a mathematical
form for the probability function and the probability func-
tion can be stored as a set of data acquired from the micro-
structure. The statistical formulation presented here would
then simulate the probability data as an input to calculate the
effective properties. In the following paragraphs it will be
shown that the statistical formulations based on one point
correlation functions may not distinguish two microstruc-
tures with the same volume fraction of the second phase
once the shape of the second phase is kept the same. In
the present formulation, such a difference is recognized as
a result of the inclusion of the second order correlation
functions.

The statistical continuum theory also plays an equally
important role with the self-consistent model in the plasti-
city of large deformation as it did in elasticity. Adams et al.
[38], presented a statistical formulation of viscoplastic beha-
vior in heterogeneous polycrystals by taking the approach,
which parallels the constructs in the statistical continuum
theory of linear-elastic polycrystals [2,4,31,37]. A secant
modulus formulation of the single crystal constitutive law
was used. The interaction law from equilibrium conditions
and incompressibility condition was obtained by using
Green’s function method. The statistical formulation was
formed from the interaction law by incorporating the two-
point probability density function of lattice orientations, that
can also be called the crystallite orientation correlation
function (OCF) [39]. The statistical theory of Adams et al.
[38] was first applied to the prediction of initial texture
evolution in FCC polycrystals under uniaxial creep [40].

In the following sections, the general statistical formula-
tion to calculate the effective moduli is introduced for an
elastic material first, then the two-point correlation func-
tions are incorporated in the general theory using the two-
point probability functions. Finally, a numerical method for
the simulation of the effective modulus for a two-isotropic-
phase composite material is presented. A simple form for
the two-point probability function is used to simulate a
randomly distributed structure originally suggested by
Corson [41,42]. A randomly distributed microstructure is
then compared to a periodic microstructure, which did not
require a mathematical form for its probability function.
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These results are compared to the Voigt’s and Reuss’s upper
and lower limits.

2. Effective elastic moduli

Let us assume that a macroscopic elastic moduli exists in
specific regions of a composite material. This implies that
the scale of fluctuation (and the range of inhomogeneity) is
very small compared to the dimensions of the specimen
under investigation. The local elastic modulic�r � � cijkl

tensor is a function of position and changes from point to
point depending on the property of each individual consti-
tuent. Globally, the distribution of the elastic moduli in this
domain is statistically homogeneous. We also assume that
Ergotic Hypothesis is valid within a representative coherent
volume of the microstructure. It is further assumed that this
scale of microstructure is much smaller than the material
under investigation. In such a situation the macroscopic or
effective elastic moduli tensorC � �Cijkl �may be calculated
from the local modulic. Let us assume further that the
complete statistical information in the form of correlation
functions is available.

In the following paragraphs the averages are denoted over
the representative volumeV using bracketsk l: The average
for the elastic modulic is then represented as:

kcijkl l � kcijkl �r �l � 1
V

Z
V

cijkl �r � dV �1�

wherer is the position vector. Because the specimen consid-
ered contains a sufficiently large number of grains of the
second phase and is macroscopically homogeneous, Hill’s
condition [10] is valid. Then

k1sl � k1c1l � k1lkc1l �2�
This condition was originally proposed by Hill and later
used by Kro¨ner [2] to derive the effective elastic law for a
linearly elastic heterogeneous material. Here1 � 1ij is the
local strain tensor which varies on a microscopic scale. So
the two definitions of the effective elastic moduli tensorC

are simultaneously satisfied,

k1lCk1l � k1c1l; Ck1l � kc1l �3�
The latter will be used in this formulation.

A fourth rank tensora� �aijkl � is introduced here to
represent the local inhomogeneity. If the local deviation
from the macroscopic strain is denoted by1 0, then

1 0 � 1 2 k1l � ak1l �4�
From Eqs. (3) and (4), a new equation forC can be written.

C � kcl 1 kc0al �5�
wherec0 � c 2 kcl represents the deviation from the aver-
age. For effective elastic moduliC, kc0al can be considered
as a correction term tokcl: Eq. (5) shows that all specimens
which satisfykcl andkc0al will result in the same effective
elastic moduli, though the distribution of the local moduli
cijkl may be different. This implies that a complete spatial
distribution ofcijkl is not necessary for the calculation ofC
and the full statistical information is enough. In order to
representC as a function ofc, the correlation between
kc0al andc is needed.

Locally, equilibrium is required throughout the specimen,

�cijkl1kl�;j � ��kcijkl l 1 c0ijkl ��k1kll 1 1 0kl��; j � 0 �6�
Commas represent partial differentiation with respect to
position. Performing the differentiation and rearranging
terms,

kcijkl l1
0
kl;j � 2�c0ijkl �;jk1kll 2 �c0ijkl1

0
kl�; j �7�

This set of partial differential equations can be solved by the
use of the elastic Green’s function tensorGlm�r12� through

kcijkl lGlm;ik�r12�1 d�r12�djm � 0 �8�
where d�r12� is the Dirac’s delta function for the vector
relating any two points in the microstructurer12 �
r 2 2 r1: Glm can be written as a Fourier integral over the
infinite k-space:

Glm�r12� � 1
8p3

Z
k[k3

~Glm�k� eik·r12 dk3 �9�

where ~Glm�k� can be obtained from the Fourier transforms
of Eq. (8):

2kcijkl lkikk
~Glm�k�1 djm � 0 �10�

For an isotropic tensorkcl with Laméconstants�l and �m

~Glm�k� � 2� �l 1 �m�k1km 1 � �l 1 2 �m�k2dlm

�m� �l 1 2 �m�k4 �11�

and then

Glm�r12� � 1
8p �m ur12u

2dlm 2
�l 1 �m
�l 1 2 �m

dlm 2
rl rm

ur12u2

 !( )
�12�
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Fig. 1. Two elements geometry of the convolution integral problemG × F:



whereri and rj are the components of the vectorr 12 (see
Fig. 1).

The solution of Eq. (6) can be written as

1 0kl�r1� �
Z

V
dr2Gik;l�r12��c0ijmn�r2�;jk1mnl

1 �c0ijmn�r2�1 0mn�r2��;j� �13�
Replacing1 0 by a according to Eq. (4), the fourth rank
tensora is obtained.

aklmn�r 1� �
Z

V
dr2Gik;l�r12��c0ijmn�r 2�;j 1 �c0ijpq�r 2�apqmn�r2��; j�

�14�
Integrating by parts, and noting that

R
V dr2{ Gik;l�r12� �

�c0ijmn�r2�1 c0ijpq�r2�apqmn�r2��} ; j equals zero, we get

aklmn�r 1� � 2
Z

V
dr2Gik;l�r12��c0ijmn�r 2�1 �c0ijpq�r2�apqmn�r2���

�15�
This equation can be solved by iteration (either numeri-

cally or analytically). An analytical representation can be
produced by introducingaklmn back into Eq. (15).a can be
written as

aklmn� a�1�klmn 1 a�2�klmn 1 a�3�klmn 1 … �16�
where

aklmn�r1� � 2
Z

V
dr2Gik;jl �r12�c0ijmn�r2�

a�2�klmn�r1� �
Z

V
dr 2Gik;jl �r12��c0ijpq�r2�

Z
V

dr3Grp;sq�r23�c0rsmn�r3��

..

.

�17�
From Eq. (17),kc0al can be obtained

Here kc0abkl�r1�c0ijmn�r2�l and kc0abkl�r1�c0ijpq�r2�c0rsmn�r3�l
represent two-point and three-point correlation functions,
respectively.

3. Correlation functions

In this section, the correlation functions that provide the
statistical information are formulated using the polarized
tensor c0ijkl : Correlation functions are equivalent to the
moments of the probability density function defined in the
probability theory [2]. For instance, two-dimensional

moments of the two-dimensional densityP2�m1;m2� are
defined as

mj
1m

k
2 ; E�mj

1m
k
2� �

Z∞

2 ∞

Z∞

2 ∞
mj

1m
k
2P2�m1;m2� dm1 dm2

�19�

They describe a certain relationship or correlation
between the results of measurementsm1 at point x1

and timet1 and the results of measurementsm2 at pointx2

and timet2.
Correlation functions in Eq. (18) are represented as

kc0abkl�r1�c0ijmn�r2�l and kc0abkl�r1�c0ijpq�r2�c0rsmn�r3�l: The
former is a two-point correlation function and the latter is
a three-point correlation function. They are defined as

kc0abkl�r1�c0ijmn�r2�l � 1
V

Z
V

c0abkl�r1�c0ijmn�r2� dV
����
r 12

� 1
V

Z
V

c0abkl�r1�c0ijmn�r1 1 r12� dr1

����
r12

�20�

kc0abkl�r1�c0ijpq�r2�c0rsmn�r3�l

� 1
V

Z
V

c0abkl�r1�c0ijpq�r2�c0rsmn�r3� dV
����
r12;r 23

� 1
V

Z
V

c0abkl�r1�c0ijpq�r1 1 r12�c0rsmn�r1 1 r12 1 r23�

× dr 1 r12;r 23
�21�

���
where ur12

; ur12;r23
represent integration for fixedr 12, r 12

and r 23, respectively. Assume the validity of the ergodic
hypothesis, which permits the interchange of volume

averages with ensemble averages. Eqs. (20) and (21)
for two-point, three-point correlations can be rewritten
as

kc0abkl�r1�c0ijmn�r2�l �
Z

h1[c0

Z
h2[c0

c0abkl�r1�c0ijmn�r2�

× P2�r1uh1; r2uh2� dh1 dh2 �22�

kc0abkl�r1�c0ijpq�r2�c0rsmn�r3�l �
Z

h1[c0

Z
h2[c0

Z
h3[c0

× c0abkl�r 1�c0ijpq�r2�c0rsmn�r3�P3�r1uh1; r 2uh2; r 3uh3� dh1 dh2 dh3

�23�
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kc0abkl�r1�a�1�klmn�r1�l � 2
Z

V
dr12Gik;jl �r12�kc0abkl�r1�c0ijmn�r2�l

kc0abkl�r1�a�2�klmn�r1�l �
Z

V
dr12Gik;jl �r12�

Z
V

dr23Grp;sq�r23�kc0abkl�r1�c0ijpq�r2�c0rsmn�r3�l

..

.

�18�



whereP2 and P3 are the two-point and three-point prob-
ability density functions andr1uh1; r2uh2; r3uh3 refer to
the statesh1, h2 and h3 for c0 to occur at positionsr 1, r 2

and r 3, respectively.P2 is a function of r2 2 r1; h1 and
h2, and P3 is a function of r2 2 r1; r3 2 r2; h1, h2 and
h3.

In order to solve Eqs. (22) and (23), which are critical to
the final evaluation ofC, we need to know the probability
functionsP2 andP3. In this paper, the focus is on the two-
point correlation function and its limitation in predicting the
effective properties for a two-isotropic phase composite
material, and consequently the contribution from the
three-point probability function is ignored.

Different forms of probability functions have been
already been introduced by others [35,42,43]. The formula-
tion introduced here is independent of the mathematical
form chosen for the probability function. The probability
data can be calculated from the microstructure and saved
as a data file used later by the present formulation. The
existence of a mathematical form would allow one to
perform a statistical study on the parameters in the formula-
tion to compare various types of microstructures. For the
purpose of this paper a mathematical form for the two-point
probability function is used here [41,42]:

Pij �r� � aij 1 bij e2mij r
nij �24�

where i � 1;2; j � 1;2 for a two-phase material;Pij �r�
represents the probability occurrence of one point in phase
i and the other point which is located at a distancer away in
phasej. aij andbij depend on the volume fractionsV1, and
V2 of the two phases (Table 1).mij and nij are empirical
constants determined by a least squares fit for the measured
data and the functional form chosen forPij : mij and nij

describe the statistical information of the distribution and
morphology of materials. In Eq. (24) the distancer between
two points is the main parameter used in the analysis. This
equation represents a material, which is orientationally
random. This does not mean that the material is necessarily
isotropic in property, but that the probability distribution
function, which is used to represent the distribution of two
phases, is orientation independent. The form of the prob-
ability functions presented here imposes the assumption that
orientation of vectors connecting any two related points has
no influence on the properties. Accordingly, only the

magnitude of vectors plays a role here. For the two-isotro-
pic-phase materials considered here, such an assumption is
valid only if the second phase particles are statistically
equiaxed and distributed randomly inside the first phase.

Assume that the elastic moduli tensorc for two phases are
c1 andc2. The corresponsding polarized modulus tensorc0

for either statesh1 andh2 arec10 andc20. Now Eq. (22) can
take the following form:

kc0abkl�r1�c0ijmn�r2�l � c10abklc10ijmnP2�r1uc10; r2uc10�
1 c10abklc20ijmnP2�r1uc10; r2uc20�
1 c20abklc10ijmnP2�r1uc20; r2uc10�
1 c20abklc20ijmnP2�r1uc20; r2uc20� �25�

where Eq. (24) is used to representP2�r1uc10; r2uc10�;
P2�r1uc10; r2uc20�; P2�r1uc20; r2uc10� andP2�r1uc20; r2uc20� in
the form ofP11, P22, P33 andP44 as described by the follow-
ing equations:

P2�r1uc10; r2uc10� � P11 � V2
1 1 V1V2 exp�2m11ur2 2 r1un11�

�26�

P2�r1uc10; r2uc20� � P21 � V1V2 2 V1V2

× exp�2m21ur2 2 r1un21� �27�

P2�r1uc20; r2uc10� � P12 � V2V1 2 V2V1

× exp�2m12ur2 2 r1un12� �28�

P2�r1uc20; r2uc20� � P22 � V2
2 1 V2V1 exp�2m22ur2 2 r1un22�

�29�

4. Numerical simulation

From the iterative analytical series expansion defined in
Eq. (18), the second term of Eq. (5),kc0al, can be formulated
in the following way. Here we only take the first equation,
which uses a two-point correlation function, neglecting all
others. Then Eqs. (5), (18) and (26) are combined and
the equation for the effective elastic moduli of the two-
isotropic-phase composite material is obtained:

Cabmn� kcabmnl 2
Z

V
dr12Gik; jl �r12�{ c10abklc10ijmnP11

1 c10abklc20ijmnP21 1 c20abklc10ijmnP12

1 c20abklc20ijmnP22} �30�
or in the short form,

C � kcl 2 G × F �31�
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Table 1
Limiting conditions for the two-point probability function

Pij Boundary conditions Result coefficients

r � 0 r ! ∞ aij � bij �

P11 V1 V2
1 V2

1 V1V2

P12 0 V1V2 V1V2 2V1V2

P21 0 V1V2 V1V2 2V1V2

P22 V2 V2
2 V2

2 V1V2



whereF is an 8th rank tensor of the form

Fabklijmn� c10abklc10ijmnP11 1 c10abklc20ijmnP21

1 c20abklc10ijmnP12 1 c20abklc20ijmnP22 �32�
For a representative two-phase material’s microstructure
where each phase is assumed to be isotropic (with elastic
moduli tensorc1, c2), the distribution and morphology of
the two phases can be represented by the volume fractions
V1, V2 and the statistical constantsmij and nij by proper
experimental measurements.

In this paper a numerical routine is used to calculate the
integral in Eq. (31). First, the specimen is divided in a
number of cellular cubic regions appropriate for numerical
integration. The cube is further divided into a number of
cubes, the size of which is assumed to be small enough, to
represent the complete microstructure. There are three rules
for this numerical construction. First, the cubic region must
contain sufficient number of grains of the two phases so that
it can be taken as a statistical representation of the entire
specimen. Second, the number of unit cubes is calculated
based on a representative grain or size scale within the

microstructure (such that the average size of such grains,
are much greater than the unit cube size). Third, the cubic
region is chosen large enough so that the corresponding
Green’s function for the maximumr 12 falls within the
expected error according to the higher order terms in Eq.
(6). Fig. 1 shows the geometry of two cubes in the numerical
model.

Assume each cube comprises only of one phase. For each
pair of cubes (shown by Fig. 1),F is taken to be constant
over the twoVcs. Then, the numerical form for the calcula-
tion of G × F can be presented as

G × F �
X

V 0c[V
Vc[V

Fabklijmn

Z
r2[V 0c
r1[Vc

dr12Gik;jl �r12� �33�

5. Results and comparison

The simulation of the statistical theory was applied to a
set of samples of composite materials with varying familiar
geometries and distribution. A computer generated pseudo-
random microstructure (see Fig. 2) was used to calculate the
proper statistics for the analysis. In this microstructure, the
spheres with varying radius represent randomly distributed
second phase inclusions. The centers of these spheres were
chosen at random and their radii were also varied at random.
The corresponding statistical parametersmij and nij were
measured also by a computer program. The numerical
scheme measures the two-point probabilities (appearing
on the left side of Eq. (24)) directly from the microstructure
for all values ofr. The constantsmij andnij are then obtained
by a least squares fit to the probabilities data and the func-
tional form represented by Eq. (24). The values forr are
incremented in steps of unity, the size of which is much less
than the average size of grains of the second phase. A
numerical model is constructed following the three rules
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Fig. 2. Pseudo-random microstructure generated by computer.

Fig. 3. The comparison of the effective Young’s modulusE calculated by
statistical model, Voigt’s lower and Reuss’s upper limits (E0 is a reference
modulus).

Fig. 4. The comparison of the effective shear modulusm calculated by
statistical model, Voigt’s lower and Reuss’s upper limits (m0 is a reference
modulus).



described earlier. A cubic region is chosen and divided into
a number of smaller cubes with size unity. This unit size is
equivalent with increments ofr used in the measurement of
mij andnij : For the examples which follow a 15× 15× 15�
3375 small cubes are used for the numerical simulation.
This number was chosen based on a convergence analysis
by repeating the simulation for cubic regions consisting of
8 × 8 × 8� 512 and 12× 12× 12� 1728 smaller cubes.
The results show that the error was reduced from 1.9 to
0.5% as compared for the simulation of the results for a
region consisting of 15× 15× 15� 3375 cubes.

Five samples were generated which contained the same
two isotropic phases with varying volume fractions of the
reinforcement phase (0.17, 0.25, 0.38, 0.46 and 0.58, respec-
tively). Laméconstantsl andm are known for both phases.
Figs. 3 and 4 present the results of the simulation for the
calculated effective constants of samples together with the
two bounds of the Voigt and Reuss theories. The statistical
theory predicts the effective modulus to be closer to the
Voigt’s limit (22% for Young’s modulusE, and 25% for
Laméconstantm or shear modulus) than Reuss.

The following additional example is chosen to show the
effectiveness of the model in distinguishing different micro-
structures with random or periodic distributions. In these
examples, the size of the second phase is kept constant.
The mathematical form (Eq. (24)) introduced earlier for a

randomly distributed microstructure cannot be used for a
periodic composite as in this example. Because of the
simple form of periodic distribution, a mathematical form
was not needed. The simulations are performed for five
different volume fractions (0.17, 0.25, 0.38, 0.46 and 0.58)
for the two composites in Fig. 5. The results of the simula-
tions for these samples are shown in Figs. 6 and 7. A lower
elastic modulus is observed for the microstructure with peri-
odic arrangement than that of the random one because of the
presence of more correlations.

Other models based on one point probability functions
(volume fractions) cannot distinguish between the two
microstructures shown in the example above. Composites
are developed with a variety of second phase size distribu-
tions which deviate from a periodic microstructure or a
randomly distributed one. For some well-known interwoven
composites with periodic distributions, closed form solu-
tions may not be available either. The statistical formulation
presented here can deal with any distribution.

The main purpose for the present paper was the incor-
poration of the two point probability functions in the statis-
tical continuum theory, and therefore, a simple form of the
probability functions is used for this paper. The statistical
mechanics model can be applied to any microstructure with
any distribution or shape of the second phase. Any form of
probability function can be used to calculate the effective
properties. In the absence of such forms, the data from real
microstructures can be deduced in the form of probability
data. The statistical formulation can then use these data
instead of the closed form presented here to simulate the
effective properties. The example chosen here covers a wide
range of particulate reinforced composites with varying size
distribution of the second phase. It was important to find
effective properties for this example and some well-known
composites (random, periodic, spherical inclusion,…) to
show the effectiveness of the model. The present examples
are very realistic and many particulate composites of
much lower volume fractions can be included in this cate-
gory. The result of the analysis for the computer-generated
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Fig. 5. Two microstructures generated by computer.

Fig. 6. The comparison of the effective Young’s modulusE for two micro-
structures.

Fig. 7. The comparison of the effective shear modulusm for two micro-
structures.



microstructure presented here shows the strength of the
model and its capability for a wide range of applications
and microstructures. A more general mathematical form
of the probability functions can simplify the numerical
scheme and speed up the simulation. In the absence of
such forms, a large number of probability data is needed
to produce reliable data. With the production of other forms
of the probability functions suitable for anisotropic micro-
structures, the application of the present model can be
extended. The closed form can also provide information
about the microstructure in the form of a number of para-
meters (volume fraction, aspect ratio,…) that can be inter-
preted and compared to some ideal microstructures.

6. Summary

This paper focuses on the application of the statistical
continuum theory to an elastic composite material consist-
ing of two isotropic phases. First, the statistical theory for
the effective elastic moduli of composite materials is formu-
lated. A two-point probability function is used for calculat-
ing the two-point correlations that are the key to the
statistical model. The calculated results fall within the
well known upper and lower bounds due to Voigt and
Reuss. The results are however closer to Voigt. The two-
point correlation functions discussed here and used in the
simulation are the first order corrections to the Voigt’s limit.
Better approximations may be obtained for more complex
geometries and distributions by considering third order
corrections and higher. These higher order terms require
the use of higher order probability functions (third,…).
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